Internists, Cardiologist (heart)
11 years of experience
Video profile
University Area
Alaska Heart Institute
3841 Piper St
Ste T100
Anchorage, AK 99508
907-550-2271
Locations and availability (1)

Education ?

Medical School Score Rankings
University of Kentucky (1999)
  • Currently 3 of 4 apples
Top 50%

Awards & Distinctions ?

Associations
American Board of Internal Medicine

Affiliations ?

Dr. Scully is affiliated with 6 hospitals.

Hospital Affilations

Score

Rankings

  • Valley Hospital
    Cardiology
    2500 S Woodworth Loop, Palmer, AK 99645
    • Currently 3 of 4 crosses
    Top 50%
  • Alaska Regional Hospital
    Cardiology
    2801 Debarr Rd, Anchorage, AK 99508
    • Currently 3 of 4 crosses
    Top 50%
  • Providence Alaska Medical Center
    Cardiology
    PO Box 196604, Anchorage, AK 99519
    • Currently 2 of 4 crosses
  • Providence Extended Care Center
    4900 Eagle St, Anchorage, AK 99503
  • Mat Su Regional Medical Center
  • Providence Seward Wesley Care Center
    PO Box 365, Seward, AK 99664
  • Publications & Research

    Dr. Scully has contributed to 9 publications.
    Title Impact of Brown Stink Bug (heteroptera: Pentatomidae) Feeding on Corn Grain Yield Components and Quality.
    Date March 2011
    Journal Journal of Economic Entomology
    Excerpt

    Brown stink bug, Euschistus servus (Say) (Heteroptera: Pentatomidae), damage on developing corn, Zea mays L., ears was examined in 2005 and 2006 by using eight parameters related to its yield and kernel quality. Stink bug infestations were initiated when the corn plants were at tasseling (VT), mid-silking (R1), and blister (R2) stages by using zero, three, and six in 2005 or zero, one, two, and four bugs per ear in 2006, and maintained for 9 d. The percentage of discolored kernels was affected by stink bug number in both years, but not always affected by plant growth stage. The growth stage effect on the percentage of discolored kernels was significant in 2006, but not in 2005. The percentage of aborted kernels was affected by both stink bug number and plant growth stage in 2005 but not in 2006. Kernel weight was significantly reduced when three E. sercus adults were confined on a corn ear at stage VT or R1 for 9 d in 2005, whereas one or two adults per ear resulted in no kernel weight loss, but four E. servus adults did cause significant kernel weight loss at stage VT in 2006. Stink bug feeding injury at stage R2 did not affect kernel damage, ear weight or grain weight in either year. The infestation duration (9 or 18 d) was positively correlated to the percentage of discolored kernels but did not affect kernel or ear weight. Based on the regression equations between the kernel weight and stink bug number, the gain threshold or economic injury level should be 0.5 bugs per ear for 9 d at stage VT and less for stage R1. This information will be useful in developing management guidelines for stink bugs in field corn during ear formation and early grain filling stages.

    Title Peanut Gene Expression Profiling in Developing Seeds at Different Reproduction Stages During Aspergillus Parasiticus Infection.
    Date March 2008
    Journal Bmc Developmental Biology
    Excerpt

    BACKGROUND: Peanut (Arachis hypogaea L.) is an important crop economically and nutritionally, and is one of the most susceptible host crops to colonization of Aspergillus parasiticus and subsequent aflatoxin contamination. Knowledge from molecular genetic studies could help to devise strategies in alleviating this problem; however, few peanut DNA sequences are available in the public database. In order to understand the molecular basis of host resistance to aflatoxin contamination, a large-scale project was conducted to generate expressed sequence tags (ESTs) from developing seeds to identify resistance-related genes involved in defense response against Aspergillus infection and subsequent aflatoxin contamination. RESULTS: We constructed six different cDNA libraries derived from developing peanut seeds at three reproduction stages (R5, R6 and R7) from a resistant and a susceptible cultivated peanut genotypes, 'Tifrunner' (susceptible to Aspergillus infection with higher aflatoxin contamination and resistant to TSWV) and 'GT-C20' (resistant to Aspergillus with reduced aflatoxin contamination and susceptible to TSWV). The developing peanut seed tissues were challenged by A. parasiticus and drought stress in the field. A total of 24,192 randomly selected cDNA clones from six libraries were sequenced. After removing vector sequences and quality trimming, 21,777 high-quality EST sequences were generated. Sequence clustering and assembling resulted in 8,689 unique EST sequences with 1,741 tentative consensus EST sequences (TCs) and 6,948 singleton ESTs. Functional classification was performed according to MIPS functional catalogue criteria. The unique EST sequences were divided into twenty-two categories. A similarity search against the non-redundant protein database available from NCBI indicated that 84.78% of total ESTs showed significant similarity to known proteins, of which 165 genes had been previously reported in peanuts. There were differences in overall expression patterns in different libraries and genotypes. A number of sequences were expressed throughout all of the libraries, representing constitutive expressed sequences. In order to identify resistance-related genes with significantly differential expression, a statistical analysis to estimate the relative abundance (R) was used to compare the relative abundance of each gene transcripts in each cDNA library. Thirty six and forty seven unique EST sequences with threshold of R > 4 from libraries of 'GT-C20' and 'Tifrunner', respectively, were selected for examination of temporal gene expression patterns according to EST frequencies. Nine and eight resistance-related genes with significant up-regulation were obtained in 'GT-C20' and 'Tifrunner' libraries, respectively. Among them, three genes were common in both genotypes. Furthermore, a comparison of our EST sequences with other plant sequences in the TIGR Gene Indices libraries showed that the percentage of peanut EST matched to Arabidopsis thaliana, maize (Zea mays), Medicago truncatula, rapeseed (Brassica napus), rice (Oryza sativa), soybean (Glycine max) and wheat (Triticum aestivum) ESTs ranged from 33.84% to 79.46% with the sequence identity >/= 80%. These results revealed that peanut ESTs are more closely related to legume species than to cereal crops, and more homologous to dicot than to monocot plant species. CONCLUSION: The developed ESTs can be used to discover novel sequences or genes, to identify resistance-related genes and to detect the differences among alleles or markers between these resistant and susceptible peanut genotypes. Additionally, this large collection of cultivated peanut EST sequences will make it possible to construct microarrays for gene expression studies and for further characterization of host resistance mechanisms. It will be a valuable genomic resource for the peanut community. The 21,777 ESTs have been deposited to the NCBI GenBank database with accession numbers ES702769 to ES724546.

    Title Resistance to Spodoptera Frugiperda (lepidoptera: Noctuidae) and Euxesta Stigmatias (diptera: Ulidiidae) in Sweet Corn Derived from Exogenous and Endogenous Genetic Systems.
    Date March 2008
    Journal Journal of Economic Entomology
    Excerpt

    Field trials using Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) and Euxesta stigmatias Loew (Diptera: Ulidiidae) were conducted to evaluate resistance and potential damage interactions between these two primary corn, Zea mays L., pests against Lepidoptera-resistant corn varieties derived from both endogenous and exogenous sources. The endogenous source of resistance was maysin, a C-glycosyl flavone produced in high concentrations in varieties 'Zapalote Chico 2451' and 'Zapalote Chico sh2'. The exogenous resistance source was the Bacillus thuringiensis (Bt)11 gene that expresses Cry1A(b) insecticidal protein found in 'Attribute GSS-0966'. Damage by the two pests was compared among these resistant varieties and the susceptible 'Primetime'. Single-species tests determined that the Zapalote Chico varieties and GSS-0966 effectively reduced S. frugiperda larval damage compared with Primetime. E. stigmatias larval damage was less in the Zapalote Chico varieties than the other varieties in single-species tests. E. stigmatias damage was greater on S. frugiperda-infested versus S. frugiperda-excluded ears. Ears with S. frugiperda damage to husk, silk and kernels had greater E. stigmatias damage than ears with less S. frugiperda damage. Reversed phase high-performance liquid chromatography analysis of nonpollinated corn silk collected from field plots determined that isoorientin, maysin, and apimaysin plus 3'-methoxymaysin concentrations followed the order Zapalote Chico sh2 > Zapalote Chico 2451 > Attribute GSS-0966 = Primetime. Chlorogenic acid concentrations were greatest in Zapalote Chico 2451. The two high maysin Zapalote Chico varieties did as well against fall armyworm as the Bt-enhanced GSS-0966, and they outperformed GSS-0966 against E. stigmatias.

    Title Developmental Changes in Abundance of the Vspbeta Protein Following Nuclear Transformation of Maize with the Soybean Vspbeta Cdna.
    Date December 2005
    Journal Bmc Plant Biology
    Excerpt

    BACKGROUND: Developing monocots that accumulate more vegetative tissue protein is one strategy for improving nitrogen-sequestration and nutritive value of forage and silage crops. In soybeans (a dicotyledonous legume), the vspA and B genes encode subunits of a dimeric vegetative storage protein that plays an important role in nitrogen storage in vegetative tissues. Similar genes are found in monocots; however, they do not accumulate in leaves as storage proteins, and the ability of monocot leaves to support accumulation of an ectopically expressed soybean VSP is in question. To test this, transgenic maize (Zea Mays L. Hi-II hybrid) lines were created expressing soybean vspB from a maize ubiquitin Ubi-1 promoter. RESULTS: From 81 bombardments, 101 plants were regenerated, and plants from five independent lines produced vspB transcripts and VSPbeta polypeptides. In leaves from seven-week-old plants (prior to flowering), VSPbeta accumulated to 0.5% of the soluble leaf protein in primary transgenic plants (R0), but to only 0.03% in R1 plants. During seed-filling (silage-stage) in R1 plants, the VSPbeta protein was no longer detected in leaves and stems despite continued presence of the vspB RNA. The RNA transcripts for this peptide either became less efficiently translated, or the VSPbeta protein became unstable during seed-fill. CONCLUSION: Developmental differences in the accumulation of soybean VSPbeta when transgenically expressed in maize show that despite no changes in the vspB transcript level, VSPbeta protein that is readily detected in leaves of preflowering plants, becomes undetectable as seeds begin to develop.

    Title Pyk2 Regulates Serca2 Gene Expression in Neonatal Rat Ventricular Myocytes.
    Date August 2005
    Journal American Journal of Physiology. Cell Physiology
    Excerpt

    The nonreceptor protein tyrosine kinase (PTK) proline-rich tyrosine kinase 2 (PYK2) has been implicated in cell signaling pathways involved in left ventricular hypertrophy and heart failure, but its exact role has not been elucidated. In this study, replication-defective adenoviruses (Adv) encoding green fluorescent protein (GFP)-tagged, wild-type (WT), and mutant forms of PYK2 were used to determine whether PYK2 overexpression activates MAPKs, and downregulates SERCA2 mRNA levels in neonatal rat ventricular myocytes (NRVM). PYK2 overexpression significantly decreased SERCA2 mRNA (as determined by Northern blot analysis and real-time RT-PCR) to 54 +/- 4% of Adv-GFP-infected cells 48 h after Adv infection. Adv-encoding kinase-deficient (KD) and Y(402)F phosphorylation-deficient mutants of PYK2 also significantly reduced SERCA2 mRNA (WT>KD>Y(402)F). Conversely, the PTK inhibitor PP2 (which blocks PYK2 phosphorylation by Src-family PTKs) significantly increased SERCA2 mRNA levels. PYK2 overexpression had no effect on ERK1/2, but increased JNK1/2 and p38(MAPK) phosphorylation from fourfold to eightfold compared with GFP overexpression. Activation of both "stress-activated" protein kinase cascades appeared necessary to reduce SERCA2 mRNA levels. Adv-mediated overexpression of constitutively active (ca)MKK6 or caMKK7, which activated only p38(MAPK) or JNKs, respectively, was not sufficient, whereas combined infection with both Adv reduced SERCA2 mRNA levels to 45 +/- 12% of control. WTPYK2 overexpression also significantly reduced SERCA2 promoter activity, as determined by transient transfection of a 3.8-kb SERCA2 promoter-luciferase construct. Thus a PYK2-dependent signaling cascade may have a role in abnormal cardiac Ca(2+) handling in left ventricular hypertrophy and heart failure via downregulation of SERCA2 gene transcription.

    Title Activation of Focal Adhesion Kinase by Protein Kinase C Epsilon in Neonatal Rat Ventricular Myocytes.
    Date October 2003
    Journal American Journal of Physiology. Heart and Circulatory Physiology
    Excerpt

    Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase critical for both cardiomyocyte survival and sarcomeric assembly during endothelin (ET)-induced cardiomyocyte hypertrophy. ET-induced FAK activation requires upstream activation of one or more isoenzymes of protein kinase C (PKC). Therefore, with the use of replication-defective adenoviruses (Adv) to overexpress constitutively active (ca) and dominant negative (dn) mutants of PKCs, we examined which PKC isoenzymes are necessary for FAK activation and which downstream signaling components are involved. FAK activation was assessed by Western blot analysis with an antibody specific for FAK autophosphorylated at Y397 (Y397pFAK). ET (10 nmol/l; 2-30 min) resulted in the time-dependent activation of FAK which was inhibited by chelerythrine (5 micromol/l; 1 h pretreatment). Adv-caPKC epsilon, but not Adv-caPKC delta, activated FAK compared with a control Adv encoding beta-galactosidase. Conversely, Adv-dnPKC epsilon inhibited ET-induced FAK activation. Y-27632 (10 micromol/l; 1 h pretreatment), an inhibitor of Rho-associated coiled-coil-containing protein kinases (ROCK), prevented ET- and caPKC epsilon-induced FAK activation as well as cofilin phosphorylation. Pretreatment with cytochalasin D (1 micromol/l, 1 h pretreatment) also inhibited ET-induced Y397pFAK and cofilin phosphorylation and caPKC epsilon-induced Y397pFAK. Neither inhibitor, however, interfered with ET-induced ERK1/2 activation. Finally, PP2 (50 micromol/l; 1 h pretreatment), a highly selective Src inhibitor, did not alter basal or ET-induced Y397pFAK. PP2 did, however, reduce basal and ET-induced phosphorylation of other sites on FAK, namely, Y576, Y577, Y861, and Y925. We conclude that the ET-induced signal transduction pathway resulting in downstream Y397pFAK is partially dependent on PKC epsilon, ROCK, cofilin, and assembled actin filaments, but not ERK1/2 or Src.

    Title Isoenzyme-selective Regulation of Serca2 Gene Expression by Protein Kinase C in Neonatal Rat Ventricular Myocytes.
    Date July 2003
    Journal American Journal of Physiology. Cell Physiology
    Excerpt

    Patients with cardiac hypertrophy and heart failure display abnormally slowed myocardial relaxation, which is associated with downregulation of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) gene expression. We previously showed that SERCA2 downregulation can be simulated in cultured neonatal rat ventricular myocytes (NRVM) by treatment with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA). However, NRVM express three different PMA-sensitive PKC isoenzymes (PKCalpha, PKCepsilon, and PKCdelta), which may be differentially regulated and have specific functions in the cardiomyocyte. Therefore, in this study we used adenoviral vectors encoding wild-type (wt) and kinase-defective, dominant negative (dn) mutant forms of PKCalpha, PKCepsilon, and PKCdelta to analyze their individual effects in regulating SERCA2 gene expression in NRVM. Overexpression of wtPKCepsilon and wtPKCdelta, but not wtPKCalpha, was sufficient to downregulate SERCA2 mRNA levels, as assessed by Northern blotting and quantitative, real-time RT-PCR (69 +/- 7 and 61 +/- 9% of control levels for wtPKCepsilon and wtPKCdelta, respectively; P < 0.05 for each adenovirus; n = 8 experiments). Conversely, overexpression of all three dnPKCs appeared to significantly increase SERCA2 mRNA levels (dnPKCdelta > dnPKCepsilon > dnPKCalpha). dnPKCdelta overexpression produced the largest increase (2.8 +/- 1.0-fold; n = 11 experiments). However, PMA treatment was still sufficient to downregulate SERCA2 mRNA levels despite overexpression of each dominant negative mutant. These data indicate that the novel PKC isoenzymes PKCepsilon and PKCdelta selectively regulate SERCA2 gene expression in cardiomyocytes but that neither PKC alone is necessary for this effect if the other novel PKC can be activated.

    Title Drought Stress and Preharvest Aflatoxin Contamination in Agricultural Commodity: Genetics, Genomics and Proteomics.
    Date
    Journal Journal of Integrative Plant Biology
    Excerpt

    Throughout the world, aflatoxin contamination is considered one of the most serious food safety issues concerning health. Chronic problems with preharvest aflatoxin contamination occur in the southern US, and are particularly troublesome in corn, peanut, cottonseed, and tree nuts. Drought stress is a major factor to contribute to preharvest aflatoxin contamination. Recent studies have demonstrated higher concentration of defense or stress-related proteins in corn kernels of resistant genotypes compared with susceptible genotypes, suggesting that preharvest field condition (drought or not drought) influences gene expression differently in different genotypes resulting in different levels of "end products": PR(pathogenesis-related) proteins in the mature kernels. Because of the complexity of Aspergillus-plant interactions, better understanding of the mechanisms of genetic resistance will be needed using genomics and proteomics for crop improvement. Genetic improvement of crop resistance to drought stress is one component and will provide a good perspective on the efficacy of control strategy. Proteomic comparisons of corn kernel proteins between resistant or susceptible genotypes to Aspergillus flavus infection have identified stress-related proteins along with antifungal proteins as associated with kernel resistance. Gene expression studies in developing corn kernels are in agreement with the proteomic studies that defense-related genes could be upregulated or downregulated by abiotic stresses.

    Title Monitoring the Expression of Maize Genes in Developing Kernels Under Drought Stress Using Oligo-microarray.
    Date
    Journal Journal of Integrative Plant Biology
    Excerpt

    Preharvest aflatoxin contamination of grain grown on the US southeastern Coast Plain is provoked and aggravated by abiotic stress. The primary abiotic stress is drought along with high temperatures. The objectives of the present study were to monitor gene expression in developing kernels in response to drought stress and to identify drought-responsive genes for possible use in germplasm assessment. The maize breeding line Tex6 was used, and gene expression profiles were analyzed in developing kernels under drought stress verses well-watered conditions at the stages of 25, 30, 35, 40, 45 d after pollination (DAP) using the 70 mer maize oligo-arrays. A total of 9 573 positive array spots were detected with unique gene IDs, and 7 988 were common in both stressed and well-watered samples. Expression patterns of some genes in several stress response-associated pathways, including abscisic acid, jasmonic acid and phenylalanine ammonia-lyase, were examined, and these specific genes were responsive to drought stress positively. Real-time quantitative polymerase chain reaction validated microarray expression data. The comparison between Tex6 and B73 revealed that there were significant differences in specific gene expression, patterns and levels. Several defense-related genes had been downregulated, even though some defense-related or drought responsive genes were upregulated at the later stages.


    Similar doctors nearby

    Dr. Ankie Amos

    Internal Medicine
    10 years experience
    Anchorage, AK

    Dr. John Finley

    Internal Medicine
    38 years experience
    Anchorage, AK

    Dr. Lisa Gray

    Internal Medicine
    14 years experience
    Anchorage, AK

    Dr. Stanley Watkins

    Internal Medicine
    13 years experience
    Anchorage, AK

    Dr. Adrian Letz

    Allergy & Immunology
    8 years experience
    Anchorage, AK

    Dr. Christopher Dyke

    Internal Medicine
    15 years experience
    Anchorage, AK
    Search All Similar Doctors