Family Physicians
10 years of experience

14418 W Meeker Blvd
Ste 304
Sun City West, AZ 85375
622-144-4006
Locations and availability (2)

Education ?

Medical School Score Rankings
University of California at Los Angeles (2000)
  • Currently 4 of 4 apples
Top 25%

Awards & Distinctions ?

Associations
American Board of Family Medicine

Affiliations ?

Dr. Valenzuela is affiliated with 1 hospitals.

Hospital Affilations

Score

Rankings

  • Banner Baywood Medical Center
    6644 E Baywood Ave, Mesa, AZ 85206
    • Currently 4 of 4 crosses
    Top 25%
  • Publications & Research

    Dr. Valenzuela has contributed to 69 publications.
    Title Alteration of Developmental and Pathological Retinal Angiogenesis in Angptl4-deficient Mice.
    Date December 2011
    Journal The Journal of Biological Chemistry
    Excerpt

    Proper vessel maturation, remodeling of endothelial junctions, and recruitment of perivascular cells is crucial for establishing and maintaining vessel functions. In proliferative retinopathies, hypoxia-induced angiogenesis is associated with disruption of the vascular barrier, edema, and vision loss. Therefore, identifying factors that regulate vascular maturation is critical to target pathological angiogenesis. Given the conflicting role of angiopoietin-like-4 (ANGPTL4) reported in the current literature using gain of function systems both in vitro and in vivo, the goal of this study was to characterize angiogenesis, focusing on perinatal retinal vascularization and pathological circumstances in angpl4-deficient mice. We report altered organization of endothelial junctions and pericyte coverage, both leading to impaired angiogenesis and increased vascular leakage that were eventually caught up, suggesting a delay in vessel maturation. In a model of oxygen-induced retinopathy, pathological neovascularization, which results from tissue hypoxia, was also strongly inhibited in angptl4-deficient mice. This study therefore shows that ANGPTL4 tunes endothelial cell junction organization and pericyte coverage and controls vascular permeability and angiogenesis, both during development and in pathological conditions.

    Title Efficient Differentiation and Function of Human Macrophages in Humanized Csf-1 Mice.
    Date November 2011
    Journal Blood
    Excerpt

    Humanized mouse models are useful tools to understand pathophysiology and to develop therapies for human diseases. While significant progress has been made in generating immunocompromised mice with a human hematopoietic system, there are still several shortcomings, one of which is poor human myelopoiesis. Here, we report that human CSF-1 knockin mice show augmented frequencies and functions of human myeloid cells. Insertion of human CSF1 into the corresponding mouse locus of Balb/c Rag2(-/-) γc(-/-) mice through VELOCIGENE technology resulted in faithful expression of human CSF-1 in these mice both qualitatively and quantitatively. Intra-hepatic transfer of human fetal liver derived hematopoietic stem and progenitor cells (CD34(+)) in humanized CSF-1 (CSF1(h/h)) newborn mice resulted in more efficient differentiation and enhanced frequencies of human monocytes/macrophages in the bone marrow, spleens, peripheral blood, lungs, liver and peritoneal cavity. Human monocytes/macrophages obtained from the humanized CSF-1 mice show augmented functional properties including migration, phagocytosis, activation and responses to LPS. Thus, humanized mice engineered to express human cytokines will significantly help to overcome the current technical challenges in the field. In addition, humanized CSF-1 mice will be a valuable experimental model to study human myeloid cell biology.

    Title Postsymptomatic Restoration of Smn Rescues the Disease Phenotype in a Mouse Model of Severe Spinal Muscular Atrophy.
    Date October 2011
    Journal The Journal of Clinical Investigation
    Excerpt

    Spinal muscular atrophy (SMA) is a common neuromuscular disorder in humans. In fact, it is the most frequently inherited cause of infant mortality, being the result of mutations in the survival of motor neuron 1 (SMN1) gene that reduce levels of SMN protein. Restoring levels of SMN protein in individuals with SMA is perceived to be a viable therapeutic option, but the efficacy of such a strategy once symptoms are apparent has not been determined. We have generated mice harboring an inducible Smn rescue allele and used them in a model of SMA to investigate the effects of turning on SMN expression at different time points during the course of the disease. Restoring SMN protein even after disease onset was sufficient to reverse neuromuscular pathology and effect robust rescue of the SMA phenotype. Importantly, our findings also indicated that there was a therapeutic window of opportunity from P4 through P8 defined by the extent of neuromuscular synapse pathology and the ability of motor neurons to respond to SMN induction, following which restoration of the protein to the organism failed to produce therapeutic benefit. Nevertheless, our results suggest that even in severe SMA, timely reinstatement of the SMN protein may halt the progression of the disease and serve as an effective postsymptomatic treatment.

    Title Angiogenic Sprouting into Neural Tissue Requires Gpr124, an Orphan G Protein-coupled Receptor.
    Date April 2011
    Journal Proceedings of the National Academy of Sciences of the United States of America
    Excerpt

    The vasculature of the CNS is structurally and functionally distinct from that of other organ systems and is particularly prone to developmental abnormalities and hemorrhage. Although other embryonic tissues undergo primary vascularization, the developing nervous system is unique in that it is secondarily vascularized by sprouting angiogenesis from a surrounding perineural plexus. This sprouting angiogenesis requires the TGF-β and Wnt pathways because ablation of these pathways results in aberrant sprouting and hemorrhage. We have genetically deleted Gpr124, a member of the large family of long N-terminal group B G protein-coupled receptors, few members of which have identified ligands or well-defined biologic functions in mammals. We show that, in the developing CNS, Gpr124 is specifically expressed in the vasculature and is absolutely required for proper angiogenic sprouting into the developing neural tube. Embryos lacking Gpr124 exhibit vascular defects characterized by delayed vascular penetration, formation of pathological glomeruloid tufts within the CNS, and hemorrhage. In addition, they display defects in palate and lung development, two processes in which TGF-β and/or Wnt pathways also play important roles. We also show that TGF-β stimulates Gpr124 expression, and ablation of Gpr124 results in perturbed TGF-β pathway activation, suggesting roles for Gpr124 in modulating TGF-β signaling. These results represent a unique function attributed to a long N-terminal group B-type G protein-coupled receptor in a mammalian system.

    Title Human Il-3/gm-csf Knock-in Mice Support Human Alveolar Macrophage Development and Human Immune Responses in the Lung.
    Date March 2011
    Journal Proceedings of the National Academy of Sciences of the United States of America
    Excerpt

    Mice with a functional human immune system have the potential to allow in vivo studies of human infectious diseases and to enable vaccine testing. To this end, mice need to fully support the development of human immune cells, allow infection with human pathogens, and be capable of mounting effective human immune responses. A major limitation of humanized mice is the poor development and function of human myeloid cells and the absence of human immune responses at mucosal surfaces, such as the lung. To overcome this, we generated human IL-3/GM-CSF knock-in (hIL-3/GM-CSF KI) mice. These mice faithfully expressed human GM-CSF and IL-3 and developed pulmonary alveolar proteinosis because of elimination of mouse GM-CSF. We demonstrate that hIL-3/GM-CSF KI mice engrafted with human CD34(+) hematopoietic cells had improved human myeloid cell reconstitution in the lung. In particular, hIL-3/GM-CSF KI mice supported the development of human alveolar macrophages that partially rescued the pulmonary alveolar proteinosis syndrome. Moreover, human alveolar macrophages mounted correlates of a human innate immune response against influenza virus. The hIL-3/GM-CSF KI mice represent a unique mouse model that permits the study of human mucosal immune responses to lung pathogens.

    Title Human Thrombopoietin Knockin Mice Efficiently Support Human Hematopoiesis in Vivo.
    Date March 2011
    Journal Proceedings of the National Academy of Sciences of the United States of America
    Excerpt

    Hematopoietic stem cells (HSCs) both self-renew and give rise to all blood cells for the lifetime of an individual. Xenogeneic mouse models are broadly used to study human hematopoietic stem and progenitor cell biology in vivo. However, maintenance, differentiation, and function of human hematopoietic cells are suboptimal in these hosts. Thrombopoietin (TPO) has been demonstrated as a crucial cytokine supporting maintenance and self-renewal of HSCs. We generated RAG2(-/-)γ(c)(-/-) mice in which we replaced the gene encoding mouse TPO by its human homolog. Homozygous humanization of TPO led to increased levels of human engraftment in the bone marrow of the hosts, and multilineage differentiation of hematopoietic cells was improved, with an increased ratio of myelomonocytic verus lymphoid lineages. Moreover, maintenance of human stem and progenitor cells was improved, as demonstrated by serial transplantation. Therefore, RAG2(-/-)γ(c)(-/-) TPO-humanized mice represent a useful model to study human hematopoiesis in vivo.

    Title Abnormal Response to Stress and Impaired Nps-induced Hyperlocomotion, Anxiolytic Effect and Corticosterone Increase in Mice Lacking Npsr1.
    Date December 2010
    Journal Psychoneuroendocrinology
    Excerpt

    NPSR1 is a G protein coupled receptor expressed in multiple brain regions involved in modulation of stress. Central administration of NPS, the putative endogenous ligand of NPSR1, can induce hyperlocomotion, anxiolytic effects and activation of the HPA axis. The role of NPSR1 in the brain remains unsettled. Here we used NPSR1 gene-targeted mice to define the functional role of NPSR1 under basal conditions on locomotion, anxiety- and/or depression-like behavior, corticosterone levels, acoustic startle with prepulse inhibition, learning and memory, and under NPS-induced locomotor activation, anxiolysis, and corticosterone release. Male, but not female, NPSR1-deficient mice exhibited enhanced depression-like behavior in a forced swim test, reduced acoustic startle response, and minor changes in the Morris water maze. Neither male nor female NPSR1-deficient mice showed alterations of baseline locomotion, anxiety-like behavior, or corticosterone release after exposure to a forced swim test or methamphetamine challenge in an open-field. After intracerebroventricular (ICV) administration of NPS, NPSR1-deficient mice failed to show normal NPS-induced increases in locomotion, anxiolysis, or corticosterone release compared with WT NPS-treated mice. These findings demonstrate that NPSR1 is essential in mediating NPS effects on behavior.

    Title Producing Fully Es Cell-derived Mice from Eight-cell Stage Embryo Injections.
    Date November 2010
    Journal Methods in Enzymology
    Excerpt

    In conventional methods for the generation of genetically modified mice, gene-targeted embryonic stem (ES) cells are injected into blastocyst-stage embryos or are aggregated with morula-stage embryos, which are then transferred to the uterus of a surrogate mother. F0 generation mice born from the embryos are chimeras composed of genetic contributions from both the modified ES cells and the recipient embryos. Obtaining a mouse strain that carries the gene-targeted mutation requires breeding the chimeras to transmit the ES cell genetic component through the germ line to the next (F1) generation (germ line transmission, GLT). To skip the chimera stage, we developed the VelociMouse method, in which injection of genetically modified ES cells into eight-cell embryos followed by maturation to the blastocyst stage and transfer to a surrogate mother produces F0 generation mice that are fully derived from the injected ES cells and exhibit a 100% GLT efficiency. The method is simple and flexible. Both male and female ES cells can be introduced into the eight-cell embryo by any method of injection or aggregation and using all ES cell and host embryo combinations from inbred, hybrid, and outbred genetic backgrounds. The VelociMouse method provides several unique opportunities for shortening project timelines and reducing mouse husbandry costs. First, as VelociMice exhibit 100% GLT, there is no need to test cross chimeras to establish GLT. Second, because the VelociMouse method permits efficient production of ES cell-derived mice from female ES cells, XO ES cell subclones, identified by screening for spontaneous loss of the Y chromosome, can be used to generate F0 females that can be bred with isogenic F0 males derived from the original targeted ES cell clone to obtain homozygous mutant mice in the F1 generation. Third, as VelociMice are genetically identical to the ES cells from which they were derived, the VelociMouse method opens up myriad possibilities for creating mice with complex genotypes in a defined genetic background directly from engineered ES cells without the need for inefficient and lengthy breeding schemes. Examples include creation of F0 knockout mice from ES cells carrying a homozygous null mutation, and creation of a mouse with a tissue-specific gene inactivation by combining null and floxed conditional alleles for the target gene with a transgenic Cre recombinase allele controlled by a tissue-specific promoter. VelociMice with the combinatorial alleles are ready for immediate phenotypic studies, which greatly accelerates gene function assignment and the creation of valuable models of human disease.

    Title The Loss-of-allele Assay for Es Cell Screening and Mouse Genotyping.
    Date November 2010
    Journal Methods in Enzymology
    Excerpt

    Targeting vectors used to create directed mutations in mouse embryonic stem (ES) cells consist, in their simplest form, of a gene for drug selection flanked by mouse genomic sequences, the so-called homology arms that promote site-directed homologous recombination between the vector and the target gene. The VelociGene method for the creation of targeted mutations in ES cells employs targeting vectors, called BACVecs, that are based on bacterial artificial chromosomes. Compared with conventional short targeting vectors, BacVecs provide two major advantages: (1) their much larger homology arms promote high targeting efficiencies without the need for isogenicity or negative selection strategies; and (2) they enable deletions and insertions of up to 100kb in a single targeting event, making possible gene-ablating definitive null alleles and other large-scale genomic modifications. Because of their large arm sizes, however, BACVecs do not permit screening by conventional assays, such as long-range PCR or Southern blotting, that link the inserted targeting vector to the targeted locus. To exploit the advantages of BACVecs for gene targeting, we inverted the conventional screening logic in developing the loss-of-allele (LOA) assay, which quantifies the number of copies of the native locus to which the mutation was directed. In a correctly targeted ES cell clone, the LOA assay detects one of the two native alleles (for genes not on the X or Y chromosome), the other allele being disrupted by the targeted modification. We apply the same principle in reverse as a gain-of-allele assay to quantify the copy number of the inserted targeting vector. The LOA assay reveals a correctly targeted clone as having lost one copy of the native target gene and gained one copy of the drug resistance gene or other inserted marker. The combination of these quantitative assays makes LOA genotyping unequivocal and amenable to automated scoring. We use the quantitative polymerase chain reaction (qPCR) as our method of allele quantification, but any method that can reliably distinguish the difference between one and two copies of the target gene can be used to develop an LOA assay. We have designed qPCR LOA assays for deletions, insertions, point mutations, domain swaps, conditional, and humanized alleles and have used the insert assays to quantify the copy number of random insertion BAC transgenics. Because of its quantitative precision, specificity, and compatibility with high throughput robotic operations, the LOA assay eliminates bottlenecks in ES cell screening and mouse genotyping and facilitates maximal speed and throughput for knockout mouse production.

    Title Tlr8 Deficiency Leads to Autoimmunity in Mice.
    Date November 2010
    Journal The Journal of Clinical Investigation
    Excerpt

    TLRs play an essential role in the induction of immune responses by detecting conserved molecular products of microorganisms. However, the function of TLR8 is largely unknown. In the current study, we investigated the role of TLR8 signaling in immunity in mice. We found that Tlr8(-/-) DCs overexpressed TLR7, were hyperresponsive to various TLR7 ligands, and showed stronger and faster NF-κB activation upon stimulation with the TLR7 ligand R848. Tlr8(-/-) mice showed splenomegaly, defective development of marginal zone (MZ) and B1 B cells, and increased serum levels of IgM and IgG2a. Furthermore, Tlr8(-/-) mice exhibited increased serum levels of autoantibodies against small nuclear ribonucleoproteins, ribonucleoprotein, and dsDNA and developed glomerulonephritis, whereas neither Tlr7(-/-) nor Tlr8(-/-)Tlr7(-/-) mice showed any of the phenotypes observed in Tlr8(-/-) mice. These data provide evidence for a pivotal role for mouse TLR8 in the regulation of mouse TLR7 expression and prevention of spontaneous autoimmunity.

    Title Interleukin-19 Protects Mice from Innate-mediated Colonic Inflammation.
    Date August 2010
    Journal Inflammatory Bowel Diseases
    Excerpt

    Inflammatory bowel disease (IBD) results from the chronic dysregulation of the mucosal immune system and the aberrant activation of both the innate and the adaptive immune responses. We used two complementary models of colonic inflammation to examine the roles of interleukin (IL)-19 in colonic inflammation and thus its possible role in IBD.

    Title Role of the Leucine-rich Repeat Domain of Cryopyrin/nalp3 in Monosodium Urate Crystal-induced Inflammation in Mice.
    Date July 2010
    Journal Arthritis and Rheumatism
    Excerpt

    The mechanism by which monosodium urate monohydrate (MSU) crystals intracellularly activate the cryopyrin inflammasome is unknown. The aim of this study was to use a mouse molecular genetics-based approach to test whether the leucine-rich repeat (LRR) domain of cryopyrin is required for MSU crystal-induced inflammation.

    Title Slitrk5 Deficiency Impairs Corticostriatal Circuitry and Leads to Obsessive-compulsive-like Behaviors in Mice.
    Date July 2010
    Journal Nature Medicine
    Excerpt

    Obsessive-compulsive disorder (OCD) is a common psychiatric disorder defined by the presence of obsessive thoughts and repetitive compulsive actions, and it often encompasses anxiety and depressive symptoms. Recently, the corticostriatal circuitry has been implicated in the pathogenesis of OCD. However, the etiology, pathophysiology and molecular basis of OCD remain unknown. Several studies indicate that the pathogenesis of OCD has a genetic component. Here we demonstrate that loss of a neuron-specific transmembrane protein, SLIT and NTRK-like protein-5 (Slitrk5), leads to OCD-like behaviors in mice, which manifests as excessive self-grooming and increased anxiety-like behaviors, and is alleviated by the selective serotonin reuptake inhibitor fluoxetine. Slitrk5(-/-) mice show selective overactivation of the orbitofrontal cortex, abnormalities in striatal anatomy and cell morphology and alterations in glutamate receptor composition, which contribute to deficient corticostriatal neurotransmission. Thus, our studies identify Slitrk5 as an essential molecule at corticostriatal synapses and provide a new mouse model of OCD-like behaviors.

    Title Ghrelin O-acyltransferase (goat) is Essential for Growth Hormone-mediated Survival of Calorie-restricted Mice.
    Date May 2010
    Journal Proceedings of the National Academy of Sciences of the United States of America
    Excerpt

    Ghrelin O-acyltransferase (GOAT) attaches octanoate to proghrelin, which is processed to ghrelin, an octanoylated peptide hormone that stimulates release of growth hormone (GH) from pituitary cells. Elimination of the gene encoding ghrelin or its receptor produces only mild phenotypes in mice. Thus, the essential function of ghrelin is obscure. Here, we eliminate the Goat gene in mice, thereby eliminating all octanoylated ghrelin from blood. On normal or high fat diets, Goat(-/-) mice grew and maintained the same weights as wild-type (WT) littermates. When subjected to 60% calorie restriction, WT and Goat(-/-) mice both lost 30% of body weight and 75% of body fat within 4 days. In both lines, fasting blood glucose initially declined equally. After 4 days, glucose stabilized in WT mice at 58-76 mg/dL. In Goat(-/-) mice, glucose continued to decline, reaching 12-36 mg/dL on day 7. At this point, WT mice showed normal physical activity, whereas Goat(-/-) mice were moribund. GH rose progressively in calorie-restricted WT mice and less in Goat(-/-) mice. Infusion of either ghrelin or GH normalized blood glucose in Goat(-/-) mice and prevented death. Thus, an essential function of ghrelin in mice is elevation of GH levels during severe calorie restriction, thereby preserving blood glucose and preventing death.

    Title Generation and Functional Characterization of Mice with a Conditional Bmp7 Allele.
    Date August 2009
    Journal The International Journal of Developmental Biology
    Excerpt

    Bone Morphogenetic Proteins (BMPs) play multiple and important roles in embryonic development as well as in homeostasis and tissue repair in the adult. Bmp7 has been implicated in developmental disorders and in a variety of diseases, but functional studies to elucidate its role so far have been hampered, since mice deficient in BMP7 die around or just after birth. To facilitate such studies, we generated mice in which the Bmp7 gene has been rendered conditional-null by flanking its first coding exon with loxP sites. To this end, we adapted the two-loxP site strategy to Bacterial Homologous Recombination to create a Bacterial Artificial Chromosome-based vector for direct targeting in mouse embryonic stem cells. Functional analysis showed that in vivo, the conditional-null Bmp7(flx/flx) mice are phenotypically wild type, whereas post Cre-mediated recombination, the resulting Bmp7(delta/delta) mice are phenotypically null. Thus, this study validates the usefulness of the Bmp7(flx/flx) mouse which in turn should empower in vivo studies aimed at elucidating the roles of Bmp7 in postnatal development, homeostasis and disease.

    Title Angiomodulin is a Specific Marker of Vasculature and Regulates Vascular Endothelial Growth Factor-a-dependent Neoangiogenesis.
    Date August 2009
    Journal Circulation Research
    Excerpt

    Blood vessel formation is controlled by the balance between pro- and antiangiogenic pathways. Although much is known about the factors that drive sprouting of neovessels, the factors that stabilize and pattern neovessels are undefined. The expression of angiomodulin (AGM), a vascular endothelial growth factor (VEGF)-A binding protein, was increased in the vasculature of several human tumors as compared to normal tissue, raising the hypothesis that AGM may modulate VEGF-A-dependent vascular patterning. To elucidate the expression pattern of AGM, we developed an AGM knockin reporter mouse (AGM(lacZ/+)), with which we demonstrate that AGM is predominantly expressed in the vasculature of developing embryos and adult organs. During physiological and pathological angiogenesis, AGM is upregulated in the angiogenic vasculature. Using the zebrafish model, we found that AGM is restricted to developing vasculature by 17 to 22 hours postfertilization. Blockade of AGM activity with morpholino oligomers results in prominent angiogenesis defects in vascular sprouting and remodeling. Concurrent knockdown of both AGM and VEGF-A results in synergistic angiogenesis defects. When VEGF-A is overexpressed, the compensatory induction of the VEGF-A receptor, VEGFR2/flk-1, is blocked by the simultaneous injection of AGM morpholino oligomers. These results demonstrate that the vascular-specific marker AGM modulates vascular remodeling in part by temporizing the proangiogenic effects of VEGF-A.

    Title During Muscle Atrophy, Thick, but Not Thin, Filament Components Are Degraded by Murf1-dependent Ubiquitylation.
    Date July 2009
    Journal The Journal of Cell Biology
    Excerpt

    Loss of myofibrillar proteins is a hallmark of atrophying muscle. Expression of muscle RING-finger 1 (MuRF1), a ubiquitin ligase, is markedly induced during atrophy, and MuRF1 deletion attenuates muscle wasting. We generated mice expressing a Ring-deletion mutant MuRF1, which binds but cannot ubiquitylate substrates. Mass spectrometry of the bound proteins in denervated muscle identified many myofibrillar components. Upon denervation or fasting, atrophying muscles show a loss of myosin-binding protein C (MyBP-C) and myosin light chains 1 and 2 (MyLC1 and MyLC2) from the myofibril, before any measurable decrease in myosin heavy chain (MyHC). Their selective loss requires MuRF1. MyHC is protected from ubiquitylation in myofibrils by associated proteins, but eventually undergoes MuRF1-dependent degradation. In contrast, MuRF1 ubiquitylates MyBP-C, MyLC1, and MyLC2, even in myofibrils. Because these proteins stabilize the thick filament, their selective ubiquitylation may facilitate thick filament disassembly. However, the thin filament components decreased by a mechanism not requiring MuRF1.

    Title Connective Tissue Growth Factor (ctgf) Inactivation Leads to Defects in Islet Cell Lineage Allocation and Beta-cell Proliferation During Embryogenesis.
    Date June 2009
    Journal Molecular Endocrinology (baltimore, Md.)
    Excerpt

    The factors necessary for normal pancreatic islet morphogenesis have not been well characterized. Here we report that connective tissue growth factor (CTGF) is involved in the establishment of normal islet endocrine cell ratio and architecture. CTGF is a secreted protein known to modulate several growth factor-signaling pathways including TGF-beta, BMP, and Wnt. Although its role in pancreatic diseases such as pancreatitis and pancreatic cancer are well documented, a role for CTGF in normal pancreas development and function has heretofore not been examined. Using a lacZ-tagged CTGF allele, we describe for the first time the expression pattern of CTGF in the developing pancreas and the requirement of CTGF for normal islet morphogenesis and embryonic beta-cell proliferation. CTGF is highly expressed in pancreatic ductal epithelium and vascular endothelium, as well as at lower levels in developing insulin(+) cells, but becomes down-regulated in beta-cells soon after birth. Pancreata from CTGF null embryos have an increase in glucagon(+) cells with a concomitant decrease in insulin(+) cells, and show defects in islet morphogenesis. Loss of CTGF also results in a dramatic decrease in beta-cell proliferation at late gestation. Unlike CTGF null embryos, CTGF heterozygotes survive past birth and exhibit a range of islet phenotypes, including an intermingling of islet cell types, increased number of glucagon(+) cells, and beta-cell hypertrophy.

    Title Alternatively Activated Macrophage-derived Relm-{alpha} is a Negative Regulator of Type 2 Inflammation in the Lung.
    Date May 2009
    Journal The Journal of Experimental Medicine
    Excerpt

    Differentiation and recruitment of alternatively activated macrophages (AAMacs) are hallmarks of several inflammatory conditions associated with infection, allergy, diabetes, and cancer. AAMacs are defined by the expression of Arginase 1, chitinase-like molecules, and resistin-like molecule (RELM) alpha/FIZZ1; however, the influence of these molecules on the development, progression, or resolution of inflammatory diseases is unknown. We describe the generation of RELM-alpha-deficient (Retnla(-/-)) mice and use a model of T helper type 2 (Th2) cytokine-dependent lung inflammation to identify an immunoregulatory role for RELM-alpha. After challenge with Schistosoma mansoni (Sm) eggs, Retnla(-/-) mice developed exacerbated lung inflammation compared with their wild-type counterparts, characterized by excessive pulmonary vascularization, increased size of egg-induced granulomas, and elevated fibrosis. Associated with increased disease severity, Sm egg-challenged Retnla(-/-) mice exhibited elevated expression of pathogen-specific CD4(+) T cell-derived Th2 cytokines. Consistent with immunoregulatory properties, recombinant RELM-alpha could bind to macrophages and effector CD4(+) Th2 cells and inhibited Th2 cytokine production in a Bruton's tyrosine kinase-dependent manner. Additionally, Retnla(-/-) AAMacs promoted exaggerated antigen-specific Th2 cell differentiation. Collectively, these data identify a previously unrecognized role for AAMac-derived RELM-alpha in limiting the pathogenesis of Th2 cytokine-mediated pulmonary inflammation, in part through the regulation of CD4(+) T cell responses.

    Title Velocimouse: Fully Es Cell-derived F0-generation Mice Obtained from the Injection of Es Cells into Eight-cell-stage Embryos.
    Date May 2009
    Journal Methods in Molecular Biology (clifton, N.j.)
    Excerpt

    With the completion of the human and mouse genome sequences and the development of high-throughput knockout mouse technologies, there is now a need for equally high-throughput methods for the production of mice for phenotypic studies. In response to this challenge, we recently developed a new method termed VelociMouse for the production of F0-generation mice that are fully derived from gene-targeted ES cells. In the version of the VelociMouse method described here, laser ablation of a portion of the zona pellucid (zp) of a normal eight-cell-stage embryo facilitates ES cell injection. Upon gestation in a surrogate mother, the injected embryos produce F0 mice that carry no detectable host embryo contribution (<0.1%). The fully ES cell-derived mice are normal, healthy, and fertile and exhibit 100% germline transmission for optimal breeding efficiency. The VelociMouse method accommodates both inbred or hybrid ES cells and either inbred or outbred eight-cell host embryos. Because the F0 mice produced are suitable for direct phenotyping studies, the VelociMouse method, coupled with high-throughput ES cell targeting technologies, such as VelociGene, offers an accelerated path to new drug target discovery and validation and a revolutionary approach to realize the full value of large-scale functional genomic efforts, such as the NIH Knockout Mouse Project ( 1 ) and the European Conditional Mouse Mutagenesis Project( 9 ).

    Title Rorgamma-expressing Th17 Cells Induce Murine Chronic Intestinal Inflammation Via Redundant Effects of Il-17a and Il-17f.
    Date February 2009
    Journal Gastroenterology
    Excerpt

    IL-17-producing CD4(+) T-helper cells (Th17) contribute to chronic autoimmune inflammation in the brain, and levels of Th17-derived cytokines increase in patients with colitis, suggesting a role in pathogenesis. We analyzed the roles of Th17 cells and the transcription factor retinoic acid receptor-related organ receptor (ROR)gamma, which regulates Th17 differentiation, in chronic intestinal inflammation.

    Title Innate and Adaptive Interleukin-22 Protects Mice from Inflammatory Bowel Disease.
    Date January 2009
    Journal Immunity
    Excerpt

    Inflammatory bowel disease (IBD) is a chronic inflammatory disease thought to be mediated by dysfunctional innate and/or adaptive immunity. This aberrant immune response leads to the secretion of harmful cytokines that destroy the epithelium of the gastrointestinal tract and thus cause further inflammation. Interleukin-22 (IL-22) is a T helper 17 (Th17) T cell-associated cytokine that is bifunctional in that it has both proinflammatory and protective effects on tissues depending on the inflammatory context. We show herein that IL-22 protected mice from IBD. Interestingly, not only was this protection mediated by CD4+ T cells, but IL-22-expressing natural killer (NK) cells also conferred protection. In addition, IL-22 expression was differentially regulated between NK cell subsets. Thus, both the innate and adaptive immune responses have developed protective mechanisms to counteract the damaging effects of inflammation on tissues.

    Title Goblet Cell-derived Resistin-like Molecule Beta Augments Cd4+ T Cell Production of Ifn-gamma and Infection-induced Intestinal Inflammation.
    Date December 2008
    Journal Journal of Immunology (baltimore, Md. : 1950)
    Excerpt

    The secreted goblet cell-derived protein resistin-like molecule beta (RELMbeta) has been implicated in divergent functions, including a direct effector function against parasitic helminths and a pathogenic function in promoting inflammation in models of colitis and ileitis. However, whether RELMbeta influences CD4(+) T cell responses in the intestine is unknown. Using a natural model of intestinal inflammation induced by chronic infection with gastrointestinal helminth Trichuris muris, we identify dual functions for RELMbeta in augmenting CD4(+) Th1 cell responses and promoting infection-induced intestinal inflammation. Following exposure to low-dose Trichuris, wild-type C57BL/6 mice exhibit persistent infection associated with robust IFN-gamma production and intestinal inflammation. In contrast, infected RELMbeta(-/-) mice exhibited a significantly reduced expression of parasite-specific CD4(+) T cell-derived IFN-gamma and TNF-alpha and failed to develop Trichuris-induced intestinal inflammation. In in vitro T cell differentiation assays, recombinant RELMbeta activated macrophages to express MHC class II and secrete IL-12/23p40 and enhanced their ability to mediate Ag-specific IFN-gamma expression in CD4(+) T cells. Taken together, these data suggest that goblet cell-macrophage cross-talk, mediated in part by RELMbeta, can promote adaptive CD4(+) T cell responses and chronic inflammation following intestinal helminth infection.

    Title The Mutation Ror2w749x, Linked to Human Bdb, is a Recessive Mutation in the Mouse, Causing Brachydactyly, Mediating Patterning of Joints and Modeling Recessive Robinow Syndrome.
    Date August 2008
    Journal Development (cambridge, England)
    Excerpt

    Mutations in ROR2 result in a spectrum of genetic disorders in humans that are classified, depending on the nature of the mutation and the clinical phenotype, as either autosomal dominant brachydactyly type B (BDB, MIM 113000) or recessive Robinow syndrome (RRS, MIM 268310). In an attempt to model BDB in mice, the mutation W749X was engineered into the mouse Ror2 gene. In contrast to the human situation, mice heterozygous for Ror2(W749FLAG) are normal and do not develop brachydactyly, whereas homozygous mice exhibit features resembling RRS. Furthermore, both Ror2(W749FLAG/W749FLAG) and a previously engineered mutant, Ror2(TMlacZ/TMlacZ), lack the P2/P3 joint. Absence of Gdf5 expression at the corresponding interzone suggests that the defect is in specification of the joint. As this phenotype is absent in mice lacking the entire Ror2 gene, it appears that specification of the P2/P3 joint is affected by ROR2 activity. Finally, Ror2(W749FLAG/W749FLAG) mice survive to adulthood and exhibit phenotypes (altered body composition, reduced male fertility) not observed in Ror2 knockout mice, presumably due to the perinatal lethality of the latter. Therefore, Ror2(W749FLAG/W749FLAG) mice represent a postnatal model for RRS, provide insight into the mechanism of joint specification, and uncover novel roles of Ror2 in the mouse.

    Title Cd133 Expression is Not Restricted to Stem Cells, and Both Cd133+ and Cd133- Metastatic Colon Cancer Cells Initiate Tumors.
    Date July 2008
    Journal The Journal of Clinical Investigation
    Excerpt

    Colon cancer stem cells are believed to originate from a rare population of putative CD133+ intestinal stem cells. Recent publications suggest that a small subset of colon cancer cells expresses CD133, and that only these CD133+ cancer cells are capable of tumor initiation. However, the precise contribution of CD133+ tumor-initiating cells in mediating colon cancer metastasis remains unknown. Therefore, to temporally and spatially track the expression of CD133 in adult mice and during tumorigenesis, we generated a knockin lacZ reporter mouse (CD133lacZ/+), in which the expression of lacZ is driven by the endogenous CD133 promoters. Using this model and immunostaining, we discovered that CD133 expression in colon is not restricted to stem cells; on the contrary, CD133 is ubiquitously expressed on differentiated colonic epithelium in both adult mice and humans. Using Il10-/-CD133lacZ mice, in which chronic inflammation in colon leads to adenocarcinomas, we demonstrated that CD133 is expressed on a full gamut of colonic tumor cells, which express epithelial cell adhesion molecule (EpCAM). Similarly, CD133 is widely expressed by human primary colon cancer epithelial cells, whereas the CD133- population is composed mostly of stromal and inflammatory cells. Conversely, CD133 expression does not identify the entire population of epithelial and tumor-initiating cells in human metastatic colon cancer. Indeed, both CD133+ and CD133- metastatic tumor subpopulations formed colonospheres in in vitro cultures and were capable of long-term tumorigenesis in a NOD/SCID serial xenotransplantation model. Moreover, metastatic CD133- cells form more aggressive tumors and express typical phenotypic markers of cancer-initiating cells, including CD44 (CD44+CD24-), whereas the CD133+ fraction is composed of CD44lowCD24+ cells. Collectively, our data suggest that CD133 expression is not restricted to intestinal stem or cancer-initiating cells, and during the metastatic transition, CD133+ tumor cells might give rise to the more aggressive CD133(- )subset, which is also capable of tumor initiation in NOD/SCID mice.

    Title Unique Functions of the Type Ii Interleukin 4 Receptor Identified in Mice Lacking the Interleukin 13 Receptor Alpha1 Chain.
    Date April 2008
    Journal Nature Immunology
    Excerpt

    The interleukin 4 receptor (IL-4R) is a central mediator of T helper type 2 (T(H)2)-mediated disease and associates with either the common gamma-chain to form the type I IL-4R or with the IL-13R alpha1 chain (IL-13Ralpha1) to form the type II IL-4R. Here we used Il13ra1-/- mice to characterize the distinct functions of type I and type II IL-4 receptors in vivo. In contrast to Il4ra-/- mice, which have weak T(H)2 responses, Il13ra1-/- mice had exacerbated T(H)2 responses. Il13ra1-/- mice showed much less mortality after infection with Schistosoma mansoni and much more susceptibility to Nippostrongylus brasiliensis. IL-13Ralpha1 was essential for allergen-induced airway hyperreactivity and mucus hypersecretion but not for fibroblast or alternative macrophage activation. Thus, type I and II IL-4 receptors exert distinct effects on immune responses.

    Title Puromycin-sensitive Aminopeptidase Limits Mhc Class I Presentation in Dendritic Cells but Does Not Affect Cd8 T Cell Responses During Viral Infections.
    Date March 2008
    Journal Journal of Immunology (baltimore, Md. : 1950)
    Excerpt

    Previous experiments using enzyme inhibitors, cell lysates, and purified enzyme have suggested that puromycin-sensitive aminopeptidase (PSA) plays a role in creating and destroying MHC class I-presented peptides although its precise contribution to these processes is unknown. To examine the importance of this enzyme in MHC class I Ag presentation, we have generated PSA-deficient mice and cell lines from these animals. PSA-deficient mice are smaller and do not reproduce as well as wild type mice. In addition, dendritic cells from PSA-deficient mice display more MHC class I molecules on the cell surface, suggesting that PSA normally limits Ag presentation by destroying certain peptides in these key APCs. Surprisingly, MHC class I levels are not altered on other PSA-deficient cells and the processing and presentation of peptide precursors in PSA-deficient fibroblasts is normal. Moreover, PSA-deficient mice have normal numbers of T cells in the periphery, and respond as well as wild type mice to eight epitopes from three viruses. These data indicate that PSA may play a role in limiting MHC class I Ag presentation in dendritic cells in vivo but that it is not essential for generating most MHC class I-presented peptides or for stimulating CTL responses to several Ags.

    Title Expression of Bmp-7 and Usag-1 (a Bmp Antagonist) in Kidney Development and Injury.
    Date February 2008
    Journal Kidney International
    Excerpt

    Once developed, end-stage renal disease cannot be reversed by any current therapy. Bone morphogenetic protein-7 (BMP-7), however, is a possible treatment for reversing end-stage renal disease. Previously, we showed that the BMP antagonist uterine sensitization-associated gene-1 (USAG-1, also known as ectodin and sclerostin domain-containing 1) negatively regulates the renoprotective action of BMP-7. Here, we show that the ratio between USAG-1 and BMP-7 expression increased dramatically in the later stage of kidney development, with USAG-1 expression overlapping BMP-7 only in differentiated distal tubules. Examination of USAG-1 expression in developing kidney indicated that a mosaic of proximal and distal tubule marker-positive cells reside side by side in the immature nephron. This suggests that each cell controls its own fate for becoming a proximal or distal tubule cell. In kidney injury models, the ratio of USAG-1 to BMP-7 expression decreased with kidney damage but increased after subsequent kidney regeneration. Our study suggests that USAG-1 expression in a kidney biopsy could be useful in predicting outcome.

    Title Interleukin-22 but Not Interleukin-17 Provides Protection to Hepatocytes During Acute Liver Inflammation.
    Date December 2007
    Journal Immunity
    Excerpt

    The cytokine interleukin-22 (IL-22) is primarily expressed by T helper 17 (Th17) CD4(+) T cells and is highly upregulated during chronic inflammatory diseases. IL-22 receptor expression is absent on immune cells, but is instead restricted to the tissues, providing signaling directionality from the immune system to the tissues. However, the role of IL-22 in inflammatory responses has been confounded by data suggesting both pro- and anti-inflammatory functions. Herein, we provide evidence that during inflammation, IL-22 played a protective role in preventing tissue injury. Hepatocytes from mice deficient in IL-22 were highly sensitive to the detrimental immune response associated with hepatitis. Additionally, IL-22-expressing Th17 cells provided protection during hepatitis in IL-22-deficient mice. On the other hand, interleukin-17 (IL-17), which is coexpressed with IL-22 and can induce similar cellular responses, had no observable role in liver inflammation. Our data suggest that IL-22 serves as a protective molecule to counteract the destructive nature of the immune response to limit tissue damage.

    Title Generation of Functional Multipotent Adult Stem Cells from Gpr125+ Germline Progenitors.
    Date October 2007
    Journal Nature
    Excerpt

    Adult mammalian testis is a source of pluripotent stem cells. However, the lack of specific surface markers has hampered identification and tracking of the unrecognized subset of germ cells that gives rise to multipotent cells. Although embryonic-like cells can be derived from adult testis cultures after only several weeks in vitro, it is not known whether adult self-renewing spermatogonia in long-term culture can generate such stem cells as well. Here, we show that highly proliferative adult spermatogonial progenitor cells (SPCs) can be efficiently obtained by cultivation on mitotically inactivated testicular feeders containing CD34+ stromal cells. SPCs exhibit testicular repopulating activity in vivo and maintain the ability in long-term culture to give rise to multipotent adult spermatogonial-derived stem cells (MASCs). Furthermore, both SPCs and MASCs express GPR125, an orphan adhesion-type G-protein-coupled receptor. In knock-in mice bearing a GPR125-beta-galactosidase (LacZ) fusion protein under control of the native Gpr125 promoter (GPR125-LacZ), expression in the testis was detected exclusively in spermatogonia and not in differentiated germ cells. Primary GPR125-LacZ SPC lines retained GPR125 expression, underwent clonal expansion, maintained the phenotype of germline stem cells, and reconstituted spermatogenesis in busulphan-treated mice. Long-term cultures of GPR125+ SPCs (GSPCs) also converted into GPR125+ MASC colonies. GPR125+ MASCs generated derivatives of the three germ layers and contributed to chimaeric embryos, with concomitant downregulation of GPR125 during differentiation into GPR125- cells. MASCs also differentiated into contractile cardiac tissue in vitro and formed functional blood vessels in vivo. Molecular bookmarking by GPR125 in the adult mouse and, ultimately, in the human testis could enrich for a population of SPCs for derivation of GPR125+ MASCs, which may be employed for genetic manipulation, tissue regeneration and revascularization of ischaemic organs.

    Title Mice Genetically Deficient in Neuromedin U Receptor 2, but Not Neuromedin U Receptor 1, Have Impaired Nociceptive Responses.
    Date August 2007
    Journal Pain
    Excerpt

    Neuromedin U (NMU) has recently been reported to have a role in nociception and inflammation. To clarify the function of the two known NMU receptors, NMU receptor 1 (NMUR1) and NMU receptor 2 (NMUR2), during nociception and inflammation in vivo, we generated mice in which the genes for each receptor were independently deleted. Compared to wild type littermates, mice deficient in NMUR2 showed a reduced thermal nociceptive response in the hot plate, but not in the tail flick, test. In addition, the NMUR2 mutant mice showed a reduced behavioral response and a marked reduction in thermal hyperalgesia following capsaicin injection. NMUR2-deficient mice also showed an impaired pain response during the chronic, but not acute, phase of the formalin test. In contrast, NMUR1-deficient mice did not show any nociceptive differences compared to their wild type littermates in any of the behavioral tests used. We observed the same magnitude of inflammation in both lines of NMU receptor mutant mice compared to their wild type littermates after injection with complete Freund's adjuvant (CFA), suggesting no requirement for either receptor in this response. Thus, the pro-nociceptive effects of NMU in mice appear to be mediated through NMUR2, not NMUR1.

    Title Vascular Endothelial Tyrosine Phosphatase (ve-ptp)-null Mice Undergo Vasculogenesis but Die Embryonically Because of Defects in Angiogenesis.
    Date June 2007
    Journal Proceedings of the National Academy of Sciences of the United States of America
    Excerpt

    Development of the vascular system depends on the highly coordinated actions of a variety of angiogenic regulators. Several of these regulators are members of the tyrosine kinase superfamily, including VEGF receptors and angiopoietin receptors, Tie1 and Tie2. Tyrosine kinase signaling is counter-regulated by the activity of tyrosine phosphatases, including vascular endothelial protein tyrosine phosphatase (VE-PTP), which has previously been shown to modulate Tie2 activity. We generated mice in which VE-PTP is replaced with a reporter gene. We confirm that VE-PTP is expressed in endothelium and also show that VE-PTP is highly expressed in the developing outflow tract of the heart and later is expressed in developing heart valves. Vasculogenesis occurs normally in mice lacking VE-PTP; however, angiogenesis is abnormal. Angiogenic defects in VE-PTP-null mice were most pronounced in the yolk sac and include a complete failure to elaborate the primitive vascular scaffold into higher-order branched arteries, veins, and capillaries. VE-PTP continues to be expressed into adulthood in the vasculature and heart valves, suggesting later roles in vascular development or homeostasis. VE-PTP is also expressed in the vasculature of growing tumors, suggesting that VE-PTP may be a new potential target for angiogenic therapies.

    Title F0 Generation Mice Fully Derived from Gene-targeted Embryonic Stem Cells Allowing Immediate Phenotypic Analyses.
    Date March 2007
    Journal Nature Biotechnology
    Excerpt

    A useful approach for exploring gene function involves generating mutant mice from genetically modified embryonic stem (ES) cells. Recent advances in genetic engineering of ES cells have shifted the bottleneck in this process to the generation of mice. Conventional injections of ES cells into blastocyst hosts produce F0 generation chimeras that are only partially derived from ES cells, requiring additional breeding to obtain mutant mice that can be phenotyped. The tetraploid complementation approach directly yields mice that are almost entirely derived from ES cells, but it is inefficient, works only with certain hybrid ES cell lines and suffers from nonspecific lethality and abnormalities, complicating phenotypic analyses. Here we show that laser-assisted injection of either inbred or hybrid ES cells into eight cell-stage embryos efficiently yields F0 generation mice that are fully ES cell-derived and healthy, exhibit 100% germline transmission and allow immediate phenotypic analysis, greatly accelerating gene function assignment.

    Title Sirt4 Inhibits Glutamate Dehydrogenase and Opposes the Effects of Calorie Restriction in Pancreatic Beta Cells.
    Date November 2006
    Journal Cell
    Excerpt

    Sir2 is an NAD-dependent deacetylase that connects metabolism with longevity in yeast, flies, and worms. Mammals have seven Sir2 homologs (SIRT1-7). We show that SIRT4 is a mitochondrial enzyme that uses NAD to ADP-ribosylate and downregulate glutamate dehydrogenase (GDH) activity. GDH is known to promote the metabolism of glutamate and glutamine, generating ATP, which promotes insulin secretion. Loss of SIRT4 in insulinoma cells activates GDH, thereby upregulating amino acid-stimulated insulin secretion. A similar effect is observed in pancreatic beta cells from mice deficient in SIRT4 or on the dietary regimen of calorie restriction (CR). Furthermore, GDH from SIRT4-deficient or CR mice is insensitive to phosphodiesterase, an enzyme that cleaves ADP-ribose, suggesting the absence of ADP-ribosylation. These results indicate that SIRT4 functions in beta cell mitochondria to repress the activity of GDH by ADP-ribosylation, thereby downregulating insulin secretion in response to amino acids, effects that are alleviated during CR.

    Title Cutting Edge: Il-23 Cross-regulates Il-12 Production in T Cell-dependent Experimental Colitis.
    Date October 2006
    Journal Journal of Immunology (baltimore, Md. : 1950)
    Excerpt

    Although IL-12 and IL-23 share the common p40 subunit, IL-23, rather than IL-12, seems to drive the pathogenesis of experimental autoimmune encephalomyelitis and arthritis, because IL-23/p19 knockout mice are protected from disease. In contrast, we describe in this study that newly created LacZ knockin mice deficient for IL-23 p19 were highly susceptible for the development of experimental T cell-mediated TNBS colitis and showed even more severe colitis than wild-type mice by endoscopic and histologic criteria. Subsequent studies revealed that dendritic cells from p19-deficient mice produce elevated levels of IL-12, and that IL-23 down-regulates IL-12 expression upon TLR ligation. Finally, in vivo blockade of IL-12 p40 in IL-23-deficient mice rescued mice from lethal colitis. Taken together, our data identify cross-regulation of IL-12 expression by IL-23 as novel key regulatory pathway during initiation of T cell dependent colitis.

    Title Resistin-like Molecule Beta Regulates Innate Colonic Function: Barrier Integrity and Inflammation Susceptibility.
    Date August 2006
    Journal The Journal of Allergy and Clinical Immunology
    Excerpt

    BACKGROUND: Resistin-like molecule (RELM) beta is a cysteine-rich cytokine expressed in the gastrointestinal tract and implicated in insulin resistance and gastrointestinal nematode immunity; however, its function primarily remains an enigma. OBJECTIVE: We sought to elucidate the function of RELM-beta in the gastrointestinal tract. METHODS: We generated RELM-beta gene-targeted mice and examined colonic epithelial barrier function, gene expression profiles, and susceptibility to acute colonic inflammation. RESULTS: We show that RELM-beta is constitutively expressed in the colon by goblet cells and enterocytes and has a role in homeostasis, as assessed by alterations in colon mRNA transcripts and epithelial barrier function in the absence of RELM-beta. Using acute colonic inflammatory models, we demonstrate that RELM-beta has a central role in the regulation of susceptibility to colonic inflammation. Mechanistic studies identify that RELM-beta regulates expression of type III regenerating gene (REG) (REG3beta and gamma), molecules known to influence nuclear factor kappaB signaling. CONCLUSIONS: These data define a critical role for RELM-beta in the maintenance of colonic barrier function and gastrointestinal innate immunity. CLINICAL IMPLICATIONS: These findings identify RELM-beta as an important molecule in homeostatic gastrointestinal function and colonic inflammation, and as such, these results have implications for a variety of human inflammatory gastrointestinal conditions, including allergic gastroenteropathies.

    Title Peripheral Myelin Protein 22 is in Complex with Alpha6beta4 Integrin, and Its Absence Alters the Schwann Cell Basal Lamina.
    Date March 2006
    Journal The Journal of Neuroscience : the Official Journal of the Society for Neuroscience
    Excerpt

    Peripheral myelin protein 22 (PMP22) is a tetraspan membrane glycoprotein, the misexpression of which is associated with hereditary demyelinating neuropathies. Myelinating Schwann cells (SCs) produce the highest levels of PMP22, yet the function of the protein in peripheral nerve biology is unresolved. To investigate the potential roles of PMP22, we engineered a novel knock-out (-/-) mouse line by replacing the first two coding exons of pmp22 with the lacZ reporter. PMP22-deficient mice show strong beta-galactosidase reactivity in peripheral nerves, cartilage, intestines, and lungs, whereas phenotypically they display the characteristics of tomaculous neuropathy. In the absence of PMP22, myelination of peripheral nerves is delayed, and numerous axon-SC profiles show loose basal lamina, suggesting altered interactions of the glial cells with the extracellular matrix. The levels of beta4 integrin, a molecule involved in the linkage between SCs and the basal lamina, are severely reduced in nerves of PMP22-deficient mice. During early stages of myelination, PMP22 and beta4 integrin are coexpressed at the cell surface and can be coimmunoprecipitated together with laminin and alpha6 integrin. In agreement, in clone A colonic carcinoma cells, epitope-tagged PMP22 forms a complex with beta4 integrin. Together, these data indicate that PMP22 is a binding partner in the integrin/laminin complex and is involved in mediating the interaction of SCs with the extracellular environment.

    Title Leucine Aminopeptidase is Not Essential for Trimming Peptides in the Cytosol or Generating Epitopes for Mhc Class I Antigen Presentation.
    Date January 2006
    Journal Journal of Immunology (baltimore, Md. : 1950)
    Excerpt

    To detect viral infections and tumors, CD8+ T lymphocytes monitor cells for the presence of antigenic peptides bound to MHC class I molecules. The majority of MHC class I-presented peptides are generated from the cleavage of cellular and viral proteins by the ubiquitin-proteasome pathway. Many of the oligopeptides produced by this process are too long to stably bind to MHC class I molecules and require further trimming for presentation. Leucine aminopeptidase (LAP) is an IFN-inducible cytosolic aminopeptidase that can trim precursor peptides to mature epitopes and has been thought to play an important role in Ag presentation. To examine the role of LAP in generating MHC class I peptides in vivo, we generated LAP-deficient mice and LAP-deficient cell lines. These mutant mice and cells are viable and grow normally. The trimming of peptides in LAP-deficient cells is not reduced under basal conditions or after stimulation with IFN. Similarly, there is no reduction in presentation of peptides from precursor or full-length Ag constructs or in the overall supply of peptides from cellular proteins to MHC class I molecules even after stimulation with IFN. After viral infection, LAP-deficient mice generate normal CTL responses to seven epitopes from three different viruses. These data demonstrate that LAP is not an essential enzyme for generating most MHC class I-presented peptides and reveal redundancy in the function of cellular aminopeptidases.

    Title Functional Characterization of Mouse Rdh11 As a Retinol Dehydrogenase Involved in Dark Adaptation in Vivo.
    Date August 2005
    Journal The Journal of Biological Chemistry
    Excerpt

    We previously cloned mouse RDH11 (mRDH11) as a gene regulated by the transcription factor sterol regulatory element-binding proteins and showed that it is a retinol dehydrogenase expressed in non-ocular tissues such as the liver and testis and in the retina (Kasus-Jacobi, A., Ou, J., Bashmakov, Y. K., Shelton, J. M., Richardson, J. A., Goldstein, J. L., and Brown, M. S. (2003) J. Biol. Chem. 278, 32380-32389). It was proposed to function in the recycling of the visual chromophore 11-cis-retinal after photoisomerization by a bleaching light, a pathway referred to as the visual cycle. In this work, we describe our studies on the ocular function of mRDH11. We created a knockout mouse by replacing the mrdh11 coding sequence with the lacZ reporter gene for expression profiling. 5-Bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) staining demonstrated active transcription of this gene in photoreceptor cells. We show by immunoblot analysis that mRDH11 is associated with retinal membranes purified from a non-outer segment fraction of the retina. No obvious retinal defect was found during development and aging of RDH11-deficient mice. The functional consequences of mRDH11 disruption were investigated by electroretinography. Dark adaptation was delayed by a factor of 2.5-3 compared with wild-type mice. However, the kinetics of 11-cis-retinal recycling during dark adaptation was not affected, suggesting that mRDH11 is not involved in the visual cycle. We propose that mRDH11 disruption affects retinoid metabolism in photoreceptor inner segments and delays the kinetics of dark adaptation through modulation of calcium homeostasis.

    Title Lhx6 Delineates a Pathway Mediating Innate Reproductive Behaviors from the Amygdala to the Hypothalamus.
    Date July 2005
    Journal Neuron
    Excerpt

    In mammals, innate reproductive and defensive behaviors are mediated by anatomically segregated connections between the amygdala and hypothalamus. This anatomic segregation poses the problem of how the brain integrates activity in these circuits when faced with conflicting stimuli eliciting such mutually exclusive behaviors. Using genetically encoded and conventional axonal tracers, we have found that the transcription factor Lhx6 delineates the reproductive branch of this pathway. Other Lhx proteins mark neurons in amygdalar nuclei implicated in defense. We have traced parallel projections from the posterior medial amygdala, activated by reproductive or defensive olfactory stimuli, respectively, to a point of convergence in the ventromedial hypothalamus. The opposite neurotransmitter phenotypes of these convergent projections suggest a "gate control" mechanism for the inhibition of reproductive behaviors by threatening stimuli. Our data therefore identify a potential neural substrate for integrating the influences of conflicting behavioral cues and a transcription factor family that may contribute to the development of this substrate.

    Title Resistance to Diet-induced Obesity in Mice Globally Overexpressing Ogh/gpb5.
    Date April 2005
    Journal Proceedings of the National Academy of Sciences of the United States of America
    Excerpt

    We identified a glycoprotein hormone beta-subunit (OGH, also called GPB5) that, as a heterodimer with the alpha-subunit GPA2, serves as a second ligand for the thyroid-stimulating hormone receptor. Mice in which the OGH gene is deleted (OGH-/-) are indistinguishable from WT littermates in body weight, response to high-fat diet, metabolic parameters, body composition, and insulin tolerance. Mice engineered to transgenically globally overexpress OGH (OGH-TG) develop approximately 2-fold elevations in their basal thyroid levels and weigh slightly less than WT littermates despite increased food intake because of an increase in their metabolic rates. Moreover, when OGH-TG mice are challenged with a high-fat diet, they gain significantly less weight and body fat than their WT littermates. The OGH-TG mice also have reduced blood glucose, insulin, cholesterol, and triglycerides. In contrast to other approaches in which the thyroid axis is activated, OGH-TG mice exhibit only minor changes in heart rate and blood pressure. Our findings suggest that constitutive low-level activation of the thyroid axis (via OGH or other means) may provide a beneficial therapeutic approach for combating diet-induced obesity.

    Title Haploinsufficiency of Delta-like 4 Ligand Results in Embryonic Lethality Due to Major Defects in Arterial and Vascular Development.
    Date December 2004
    Journal Proceedings of the National Academy of Sciences of the United States of America
    Excerpt

    Vascular development depends on the highly coordinated actions of a variety of angiogenic regulators, most of which apparently act downstream of vascular endothelial growth factor (VEGF). One potential such regulator is delta-like 4 ligand (Dll4), a recently identified partner for the Notch receptors. We generated mice in which the Dll4 gene was replaced with a reporter gene, and found that Dll4 expression is initially restricted to large arteries in the embryo, whereas in adult mice and tumor models, Dll4 is specifically expressed in smaller arteries and microvessels, with a striking break in expression just as capillaries merge into venules. Consistent with these arterial-specific expression patterns, heterozygous deletion of Dll4 resulted in prominent albeit variable defects in arterial development (reminiscent of those in Notch knockouts), including abnormal stenosis and atresia of the aorta, defective arterial branching from the aorta, and even arterial regression, with occasional extension of the defects to the venous circulation; also noted was gross enlargement of the pericardial sac and failure to remodel the yolk sac vasculature. These striking phenotypes resulting from heterozygous deletion of Dll4 indicate that vascular development may be as sensitive to subtle changes in Dll4 dosage as it is to subtle changes in VEGF dosage, because VEGF accounts for the only other example of haploid insufficiency, resulting in obvious vascular abnormalities. In summary, Dll4 appears to be a major trigger of Notch receptor activities previously implicated in arterial and vascular development, and it may represent a new opportunity for pro- and anti-angiogenic therapies.

    Title High-throughput Engineering of the Mouse Genome Coupled with High-resolution Expression Analysis.
    Date August 2003
    Journal Nature Biotechnology
    Excerpt

    One of the most effective approaches for determining gene function involves engineering mice with mutations or deletions in endogenous genes of interest. Historically, this approach has been limited by the difficulty and time required to generate such mice. We describe the development of a high-throughput and largely automated process, termed VelociGene, that uses targeting vectors based on bacterial artificial chromosomes (BACs). VelociGene permits genetic alteration with nucleotide precision, is not limited by the size of desired deletions, does not depend on isogenicity or on positive-negative selection, and can precisely replace the gene of interest with a reporter that allows for high-resolution localization of target-gene expression. We describe custom genetic alterations for hundreds of genes, corresponding to about 0.5-1.0% of the entire genome. We also provide dozens of informative expression patterns involving cells in the nervous system, immune system, vasculature, skeleton, fat and other tissues.

    Title Identification of Ubiquitin Ligases Required for Skeletal Muscle Atrophy.
    Date December 2001
    Journal Science (new York, N.y.)
    Excerpt

    Skeletal muscle adapts to decreases in activity and load by undergoing atrophy. To identify candidate molecular mediators of muscle atrophy, we performed transcript profiling. Although many genes were up-regulated in a single rat model of atrophy, only a small subset was universal in all atrophy models. Two of these genes encode ubiquitin ligases: Muscle RING Finger 1 (MuRF1), and a gene we designate Muscle Atrophy F-box (MAFbx), the latter being a member of the SCF family of E3 ubiquitin ligases. Overexpression of MAFbx in myotubes produced atrophy, whereas mice deficient in either MAFbx or MuRF1 were found to be resistant to atrophy. These proteins are potential drug targets for the treatment of muscle atrophy.

    Title Ror2, Encoding a Receptor-like Tyrosine Kinase, is Required for Cartilage and Growth Plate Development.
    Date April 2000
    Journal Nature Genetics
    Excerpt

    Receptor tyrosine kinases often have critical roles in particular cell lineages by initiating signalling cascades in those lineages. Examples include the neural-specific TRK receptors, the VEGF and angiopoietin endothelial-specific receptors, and the muscle-specific MUSK receptor. Many lineage-restricted receptor tyrosine kinases were initially identified as 'orphans' homologous to known receptors, and only subsequently used to identify their unknown growth factors. Some receptor-tyrosine-kinase-like orphans still lack identified ligands as well as biological roles. Here we characterize one such orphan, encoded by Ror2 (ref. 12). We report that disruption of mouse Ror2 leads to profound skeletal abnormalities, with essentially all endochondrally derived bones foreshortened or misshapen, albeit to differing degrees. Further, we find that Ror2 is selectively expressed in the chondrocytes of all developing cartilage anlagen, where it essential during initial growth and patterning, as well as subsequently in the proliferating chondrocytes of mature growth plates, where it is required for normal expansion. Thus, Ror2 encodes a receptor-like tyrosine kinase that is selectively expressed in, and particularly important for, the chondrocyte lineage.

    Title Dominant Mutations in Ror2, Encoding an Orphan Receptor Tyrosine Kinase, Cause Brachydactyly Type B.
    Date April 2000
    Journal Nature Genetics
    Excerpt

    Inherited limb malformations provide a valuable resource for the identification of genes involved in limb development. Brachydactyly type B (BDB), an autosomal dominant disorder, is the most severe of the brachydactylies and characterized by terminal deficiency of the fingers and toes. In the typical form of BDB, the thumbs and big toes are spared, sometimes with broadening or partial duplication. The BDB1 locus was previously mapped to chromosome 9q22 within an interval of 7.5 cM (refs 9,10). Here we describe mutations in ROR2, which encodes the orphan receptor tyrosine kinase ROR2 (ref. 11), in three unrelated families with BDB1. We identified distinct heterozygous mutations (2 nonsense, 1 frameshift) within a 7-amino-acid segment of the 943-amino-acid protein, all of which predict truncation of the intracellular portion of the protein immediately after the tyrosine kinase domain. The localized nature of these mutations suggests that they confer a specific gain of function. We obtained further evidence for this by demonstrating that two patients heterozygous for 9q22 deletions including ROR2 do not exhibit BDB. Expression of the mouse mouse orthologue, Ror2, early in limb development indicates that BDB arises as a primary defect of skeletal patterning.

    Title Angiopoietins 3 and 4: Diverging Gene Counterparts in Mice and Humans.
    Date April 1999
    Journal Proceedings of the National Academy of Sciences of the United States of America
    Excerpt

    The angiopoietins have recently joined the members of the vascular endothelial growth factor family as the only known growth factors largely specific for vascular endothelium. The angiopoietins include a naturally occurring agonist, angiopoietin-1, as well as a naturally occurring antagonist, angiopoietin-2, both of which act by means of the Tie2 receptor. We now report our attempts to use homology-based cloning approaches to identify new members of the angiopoietin family. These efforts have led to the identification of two new angiopoietins, angiopoietin-3 in mouse and angiopoietin-4 in human; we have also identified several more distantly related sequences that do not seem to be true angiopoietins, in that they do not bind to the Tie receptors. Although angiopoietin-3 and angiopoietin-4 are strikingly more structurally diverged from each other than are the mouse and human versions of angiopoietin-1 and angiopoietin-2, they appear to represent the mouse and human counterparts of the same gene locus, as revealed in our chromosomal localization studies of all of the angiopoietins in mouse and human. The structural divergence of angiopoietin-3 and angiopoietin-4 appears to underlie diverging functions of these counterparts. Angiopoietin-3 and angiopoietin-4 have very different distributions in their respective species, and angiopoietin-3 appears to act as an antagonist, whereas angiopoietin-4 appears to function as an agonist.

    Title Localization and Regulation of Musk at the Neuromuscular Junction.
    Date August 1998
    Journal Developmental Biology
    Excerpt

    The receptor tyrosine kinase, MuSK, is required for the formation of the neuromuscular junction (NMJ) where MuSK becomes phosphorylated when exposed to neuronally synthesized isoforms of agrin. To understand better the mechanisms by which MuSK mediates the formation of the NMJ, we have examined how MuSK expression is regulated during development in the embryo, by neuromuscular injury in the adult and by agrin in vitro. Here we show that MuSK is associated with the earliest observable AChR clusters at the developing motor endplate and that MuSK and AChRs codistribute throughout the development of the NMJ. These two proteins are also coordinately regulated on the surfaces of cultured myotubes where MuSK and AChRs colocalize both in spontaneous and agrin-induced clusters. While MuSK is normally restricted to the motor endplate in adult muscle, denervation results in its extrajunctional expression, although a discernible concentration of MuSK remains localized to the motor endplate even 14 days after denervation. Extrajunctional MuSK is first apparent 3 days after denervation and is sharply reduced upon reinnervation. Muscle paralysis also markedly alters the expression of MuSK in adult muscle and results in increased expression of MuSK as well as increased transcription of MuSK mRNA by extrasynaptic myonuclei. Together, these findings demonstrate that MuSK expression is highly regulated by innervation, muscle activity, and agrin, while the distribution of MuSK is precisely coordinated with that of the AChR.

    Title The Receptor Tyrosine Kinase Musk is Required for Neuromuscular Junction Formation and is a Functional Receptor for Agrin.
    Date September 1997
    Journal Cold Spring Harbor Symposia on Quantitative Biology
    Title Political Identification and Perceptions of Homelessness: Attributed Causality and Attitudes on Public Policy.
    Date August 1997
    Journal Psychological Reports
    Excerpt

    The study investigated relationships between political orientation, causal perceptions of poverty, and attitudes toward government programs for the poor. The test sample of 200 women and 200 men were recruited from introductory psychology classes. In support of hypotheses based on previous research and Weiner's attribution-emotion-action theory, when compared with self-identified Democrats, self-identified Republicans (a) were significantly more inclined to attribute homelessness to internal vs external factors and (b) expressed significantly less favorable attitudes toward publically funded programs for the homeless. Sex differences were nonsignificant. Conceptual-empirical and methodological implications are discussed. Limitations on inferences from these data and directions for inquiry into the development of individual difference in political cognitions and public policy attitudes are considered.

    Title Eph Receptors and Ligands Comprise Two Major Specificity Subclasses and Are Reciprocally Compartmentalized During Embryogenesis.
    Date December 1996
    Journal Neuron
    Excerpt

    We report that the many Eph-related receptor tyrosine kinases, and their numerous membrane-bound ligands, can each be grouped into only two major specificity subclasses. Receptors in a given subclass bind most members of a corresponding ligand subclass. The physiological relevance of these groupings is suggested by viewing the collective distributions of all members of a subclass. These composite distributions, in contrast with less informative patterns seen with individual members of the family, reveal that the developing embryo is subdivided into domains defined by reciprocal and apparently mutually exclusive expression of a receptor subclass and its corresponding ligands. Receptors seem to encounter their ligands only at the interface between these domains. This reciprocal compartmentalization implicates the Eph family in the formation of spatial boundaries that may help to organize the developing body plan.

    Title The Receptor Tyrosine Kinase Musk is Required for Neuromuscular Junction Formation in Vivo.
    Date July 1996
    Journal Cell
    Excerpt

    Formation of neuromuscular synapses requires a series of inductive interactions between growing motor axons and differentiating muscle cells, culminating in the precise juxtaposition of a highly specialized nerve terminal with a complex molecular structure on the postsynaptic muscle surface. The receptors and signaling pathways mediating these inductive interactions are not known. We have generated mice with a targeted disruption of the gene encoding MuSK, a receptor tyrosine kinase selectively localized to the postsynaptic muscle surface. Neuromuscular synapses do not form in these mice, suggesting a failure in the induction of synapse formation. Together with the results of an accompanying manuscript, our findings indicate that MuSK responds to a critical nerve-derived signal (agrin), and in turn activates signaling cascades responsible for all aspects of synapse formation, including organization of the postsynaptic membrane, synapse-specific transcription, and presynaptic differentiation.

    Title Agrin Acts Via a Musk Receptor Complex.
    Date July 1996
    Journal Cell
    Excerpt

    Formation of th neuromuscular junction depends upon reciprocal inductive interactions between the developing nerve and muscle, resulting in the precise juxtaposition of a differentiated nerve terminal with a highly specialized patch on the muscle membrane, termed the motor endplate. Agrin is a nerve-derived factor that can induced molecular reorganizations at the motor endplate, but the mechanism of action of agrin remains poorly understood. MuSK is a receptor tyrosine kinase localized to the motor endplate, seemingly well positioned to receive a key nerve-derived signal. Mice lacking either agrin or MuSK have recently been generated and exhibit similarly profound defects in their neuromuscular junctions. Here we demonstrate that agrin acts via a receptor complex that includes MuSK as well as a myotube-specific accessory component.

    Title Receptor Tyrosine Kinase Specific for the Skeletal Muscle Lineage: Expression in Embryonic Muscle, at the Neuromuscular Junction, and After Injury.
    Date October 1995
    Journal Neuron
    Excerpt

    While a number of growth factors have been described that are highly specific for particular cell lineages, neither a factor nor a receptor uniquely specific to the skeletal muscle lineage has previously been described. Here we identify a receptor tyrosine kinase (RTK) specific to skeletal muscle, which we term "MuSK" for muscle-specific kinase. MuSK is expressed at low levels in proliferating myoblasts and is induced upon differentiation and fusion. In the embryo, it is specifically expressed in early myotomes and developing muscle. MuSK is then dramatically down-regulated in mature muscle, where it remains prominent only at the neuromuscular junction; MuSK is thus the only known RTK that localizes to the neuromuscular junction. Strikingly, MuSK expression is dramatically induced throughout the adult myofiber after denervation, block of electrical activity, or physical immobilization. In humans, MuSK maps to chromosome 9q31.3-32, which overlaps with the region reported to contain the Fukuyama muscular dystrophy mutation. Identification of MuSK introduces a novel receptor-factor system that seems sure to play an important and selective role in many aspects of skeletal muscle development and function.

    Title Identification of Mammalian Noggin and Its Expression in the Adult Nervous System.
    Date October 1995
    Journal The Journal of Neuroscience : the Official Journal of the Society for Neuroscience
    Excerpt

    The multiple roles of noggin during dorsal fate specification in Xenopus embryos, together with noggin's ability to directly induce neural tissue, inspired an effort to determine whether a similar molecule exists in mammals. Here we describe the identification of human and rat noggin and explore their expression patterns; we also localize the human NOGGIN gene to chromosome 17q22, and the mouse gene to a syntenic region of chromosome 11. Mammalian noggin is remarkably similar in its sequence to Xenopus noggin, and is similarly active in induction assays performed on Xenopus embryo tissues. In the adult mammal, noggin is most notably expressed in particular regions of the nervous system, such as the tufted cells of the olfactory bulb, the piriform cortex of the brain, and the Purkinje cells of the cerebellum, suggesting that one of the earliest acting neural inducers also has important roles in the adult nervous system.

    Title Characterization of a Rat Gene, Rmal, Encoding a Protein with Four Hydrophobic Domains in Central and Peripheral Myelin.
    Date September 1995
    Journal The Journal of Neuroscience : the Official Journal of the Society for Neuroscience
    Excerpt

    Wrapping and compaction of myelin sheaths around axons require specific membrane and membrane-associated proteins. Transmembrane proteins like proteolipid protein (PLP), the peripheral myelin protein 22 (PMP-22) and P0 as well as myelin basic protein (MBP) are crucial for this process. We have isolated a rat cDNA, initially denominated NS 3, that is mainly expressed in the myelinating cells of the nervous system, the oligodendrocytes and Schwann cells. The cDNA encodes a highly hydrophobic protein of 16.8 kDa with four putative transmembrane domains. The putative NS 3 protein lacks a N-terminal hydrophobic leader sequence and has no consensus sequence for N-linked glycosylation. In contrast to PLP and PMP-22, the first and third putative transmembrane domain of the NS 3 protein contain charged amino acids, a feature which resembles the structure of gap junction proteins. Sequence analysis showed that NS 3 is the rat homolog of a human gene called MAL that was cloned from, and is expressed in various T-cell lines. Therefore, we call this gene rMAL (rat MAL). In the nervous system, the expression of rMAL, mRNA begins after birth and is highest during myelination. In situ hybridization shows that rMAL mRNA is exclusively expressed in white and gray matter oligodendrocytes in the CNS and in myelinating Schwann cells in peripheral nerves. Immunohistochemistry using a peptide-specific antibody localized the rMAL protein in the myelinated areas of the CNS and PNS. Furthermore, we demonstrate by immunoblot analysis that rMAL is a component of myelin. Its structure and distribution suggest that the rMAL protein might play an important role in compact myelin. We propose that the name rMAL protein refers to rat Myelin And Lymphocyte protein.

    Title Identification of New Oligodendrocyte- and Myelin-specific Genes by a Differential Screening Approach.
    Date July 1995
    Journal Journal of Neurochemistry
    Excerpt

    We have isolated several new genes that are specifically expressed by oligodendrocytes in the CNS. This was achieved by differential screening of a rat spinal cord cDNA library with probes derived from normal and from oligodendrocyte-free spinal cord mRNAs. Four of these genes are exclusively expressed by oligodendrocytes: Three of these are not related to known genes, whereas one encodes the myelin oligodendrocyte glycoprotein (MOG). Four other genes are expressed by oligodendrocytes as well as by Schwann cells. One gene codes for apolipoprotein D, which is thought to be involved in lipid metabolism. A second cDNA sequence codes for the recently identified galactosylceramide-synthesizing enzyme UDP-galactose:ceramide galactosyltransferase. The third gene encodes a small protein with four putative transmembrane domains that is related to a T-lymphocyte-specific membrane protein, MAL. The fourth gene encodes the rat homologue of the stearyl-CoA-desaturase 2 (SCD2) gene, which is specifically expressed in the nervous system and involved in the synthesis and regulation of long-chain unsaturated fatty acids essential for myelination. Finally, we found that a member of the beta-tubulin family is highly expressed in oligodendrocytes as well as neurons. The identification of several new proteins that may play a role in myelin synthesis and sheath formation will lead to new insight into this complex mechanism.

    Title Genomic Organization and Chromosomal Localization of the Human and Mouse Genes Encoding the Alpha Receptor Component for Ciliary Neurotrophic Factor.
    Date July 1995
    Journal Genomics
    Excerpt

    Ciliary neurotrophic factor (CNTF) has recently been found to share receptor components with, and to be structurally related to, a family of broadly acting cytokines, including interleukin-6, leukemia inhibitory factor, and oncostatin M. However, the CNTF receptor complex also includes a CNTF-specific component known as CNTF receptor alpha (CNTFR alpha). Here we describe the molecular cloning of the human and mouse genes encoding CNTFR. We report that the human and mouse genes have an identical intron-exon structure that correlates well with the domain structure of CNTFR alpha. That is, the signal peptide and the immunoglobulin-like domain are each encoded by single exons, the cytokine receptor-like domain is distributed among 4 exons, and the C-terminal glycosyl phosphatidylinositol recognition domain is encoded by the final coding exon. The position of the introns within the cytokine receptor-like domain corresponds to those found in other members of the cytokine receptor superfamily. Confirming a recent study using radiation hybrids, we have also mapped the human CNTFR gene to chromosome band 9p13 and the mouse gene to a syntenic region of chromosome 4.

    Title Identification of Full-length and Truncated Forms of Ehk-3, a Novel Member of the Eph Receptor Tyrosine Kinase Family.
    Date May 1995
    Journal Oncogene
    Excerpt

    Factors that bind and activate receptor tyrosine kinases are known to play key roles during development and in the adult. The Eph-related receptors constitute the largest known family of receptor tyrosine kinases. Members of the Eph family exhibit intriguing patterns of expression in the embryo, implicating them in a variety of developmental processes, and their expression is often restricted to particular subpopulations of postmitotic neurons in the adult. We describe the identification and characterization of a novel member of the Eph receptor family, which we have termed Ehk-3 for Eph Homologous Kinase 3. Ehk-3 displays all the major structural features shared by other members of the Eph family, including a cysteine-rich region and tandem fibronectin type-III domains in its extracellular portion. Ehk-3 is expressed in two forms in a developmentally-regulated fashion: a conventional full-length version containing the intracellular tyrosine kinase domain, as well as a truncated form that lacks this domain. Both forms of Ehk-3 are quite restricted to the nervous system in the adult, but Ehk-3 is more widely expressed in the embryo, suggesting that Ehk-3 mediates different functions during development and in the adult.

    Title Alternative Forms of Rat Trkc with Different Functional Capabilities.
    Date June 1993
    Journal Neuron
    Excerpt

    We have identified transcripts encoding several different forms of rat TrkC, a member of the Trk family of receptor tyrosine kinases that serves as a receptor for neurotrophin-3. Some forms of TrkC lack the intracytoplasmic kinase domain and thus resemble previously defined truncated variants of TrkB. Other forms of TrkC contain variable-sized amino acid insertions within the tyrosine kinase domain. Transcripts encoding all forms of TrkC can be detected throughout the nervous system, displaying substantial overlap as well as mutually exclusive distribution patterns with transcripts for TrkB. Strikingly, only transcripts encoding the truncated forms of TrkB and TrkC are found in astrocytes, peripheral nerve, and nonneural tissues. Finally, forms of TrkC containing insertions within the kinase domain retain their ability to autophosphorylate in response to neurotrophin-3, but cannot mediate proliferation in fibroblasts or neuronal differentiation in PC12 cells.

    Title The Receptor for Ciliary Neurotrophic Factor.
    Date August 1991
    Journal Science (new York, N.y.)
    Excerpt

    Although neurotrophic factors were originally isolated on the basis of their ability to support the survival of neurons, these molecules are now thought to influence many aspects of the development and maintenance of the nervous system. Identifying the receptors for these neurotrophic factors should aid in identifying the cells on which these factors act and in understanding their precise mechanisms of action. A "tagged-ligand panning" procedure was used to clone a receptor for ciliary neurotrophic factor (CNTF). This receptor is expressed exclusively within the nervous system and skeletal muscle. The CNTF receptor has a structure unrelated to the receptors utilized by the nerve growth factor family of neurotrophic molecules, but instead is most homologous to the receptor for a cytokine, interleukin-6. This similarity suggestes that the CNTF receptor, like the interleukin-6 receptor, requires a second, signal-transducing component. In contrast to all known receptors, the CNTF receptor is anchored to cell membranes by a glycosyl-phosphatidylinositol linkage.

    Title Trkb Encodes a Functional Receptor for Brain-derived Neurotrophic Factor and Neurotrophin-3 but Not Nerve Growth Factor.
    Date July 1991
    Journal Cell
    Excerpt

    A variety of findings seem to functionally link brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), while distinguishing both of these factors from the third member of the neurotrophin family, nerve growth factor (NGF). Here we demonstrate that all three of these neuronal survival molecules bind similarly to the low affinity NGF receptor, but that BDNF and NT-3, unlike NGF, do not act via the high affinity NGF receptor. However, both BDNF and NT-3, but not NGF, bind to full-length and truncated forms of a receptor-like tyrosine kinase, trkB, for which no ligand had previously been identified. In addition to binding BDNF and NT-3, trkB can mediate functional responses to both of these neurotrophins when it is expressed in PC12 cells, although BDNF appears to be the more effective ligand. Thus trkB encodes an essential component of a functional receptor for BDNF and NT-3, but not for NGF. Further evidence predicts the existence of additional functional receptors for the neurotrophins.

    Title Immunological Identification and Distribution of Parathyroid Hormone-like Protein Polypeptides in Normal and Malignant Tissues.
    Date April 1991
    Journal Endocrinology
    Excerpt

    Monoclonal and polyclonal antibodies recognizing human parathyroid hormone-like protein (PTHLP) have been produced using a series of recombinant and synthetic PTHLP peptides. These antibodies have been used to develop a two-site immunometric enzyme immunoassay which detects PTHLP[1-87] and PTHLP[1-141] but not PTH. The immunoassay detected PTHLP in extracts of squamous carcinomas and normal tissues at concentrations from 7-515 ng PTHLP[1-87]/mg protein. Immunoblotting of the extract which showed the highest immunoreactivity, a squamous carcinoma of the lung from a patient with hypercalcemia, revealed a major band having an apparent mol wt of 26,500 and several other higher mol wt bands. Similar polypeptides were observed by immunoblotting cell extracts from a cell line, SCaBER, which secretes immunoreactive PTHLP into its medium and also from tumors in nude mice derived from this cell line. Chaotropic agents did not alter the immunoblotting pattern, and antibodies to three different epitopes of PTHLP recognized these bands, indicating PTHLP expression in the extracts. Immunohistochemical staining of normal human tissue with these antibodies revealed several PTHLP-containing tissues and confirmed the results of the immunoassay, suggesting a paracrine role for PTHLP. Staining was observed in several neoplastic tissues including squamous cell carcinomas, lung carcinoma, bladder carcinoma, osteogenic sarcoma, and adenocarcinoma of the colon.

    Title Synthesis of a Gene Encoding Parathyroid Hormone-like Protein-(1-141): Purification and Biological Characterization of the Expressed Protein.
    Date February 1989
    Journal Endocrinology
    Excerpt

    PTH-like proteins (PTHLP), which are associated with humoral hypercalcemia of malignancy, have recently been purified. Isolation of their corresponding cDNAs has revealed that they are derived from a single gene. In this report a synthetic gene encoding PTHLP-(1-141), a 141-amino acid protein corresponding to the most abundant PTHLP cDNA detected in human tumors, was expressed in bacteria and purified to homogeneity. Recombinant (r) PTHLP-(1-141) migrates with an aberrantly high mol wt on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, presumably as a result of its unusually basic pI. rPTHLP-(1-141), like PTH, induced hypercalcemia in rats, caused release of 45Ca from fetal rat bones, and stimulated the synthesis of cAMP by rat osteosarcoma cells and canine renal membrane preparations. A comparison of the abilities of rPTHLP-(1-141) and bovine PTH-(1-34) to stimulate cAMP synthesis indicated rPTHLP-(1-141) to be 5-fold more potent in the osteosarcoma assay, while nearly 30-fold less active in the renal membrane adenylate cyclase assay. Although 100-fold less potent than bovine PTH-(1-34) in promoting bone resorption, rPTHLP-(1-141) was a potent calcemic factor in vivo, inducing a rise in serum calcium from 10.4 to 14.5 mg/dl when infused into rats at 1.3 micrograms/h. These results support previous assumptions that PTHLP is the humoral factor responsible for humoral hypercalcemia of malignancy. In addition, they suggest substantial differences between PTHLP and PTH in the regulation of calcium homeostasis.

    Title C-k-ras Mutations in Human Carcinomas Occur Preferentially in Codon 12.
    Date August 1988
    Journal Oncogene
    Excerpt

    A study was carried out to determine the frequency and distribution of mutations in the c-K-ras gene in human carcinoma tissue. The study was done on a total of 51 lung, colon and breast carcinoma tumors using a panel of oligonucleotides coding for the wild type and all possible mutations in codons 12 and 61 of c-K-ras gene. Four of 16 colon carcinomas, two of 27 lung carcinomas and one of eight breast carcinomas were found to contain mutations in codon 12. No mutations were found at position 61. Of the six possible amino acid replacements in codon 12, all but one was represented in the seven mutations identified.

    Title Four Human Carcinoma Cell Lines with Novel Mutations in Position 12 of C-k-ras Oncogene.
    Date March 1986
    Journal Nucleic Acids Research
    Excerpt

    We have used synthetic oligonucleotides to probe for mutations affecting amino acid 12 of the c-K-ras gene in human cell line DNA. Of seven carcinoma cell lines tested, four were found to contain a mutation at this position. In each the nucleotide G was replaced with an A resulting in a Gly to Asp substitution in three cases (cell lines A427, A1165 and A1663) and Gly to Ser in the fourth (A549). Neither of these substitutions have been previously reported in either human tumor or human tumor-derived cell line DNA's. These results indicate that association between mutations involving position 12 of the human c-K-ras oncogene and carcinomas may be stronger than previously recognized.

    Title Ribosomal Subunit Antiassociation Activity in Rabbit Reticulocyte Lysates. Evidence for a Low Molecular Weight Ribosomal Subunit Antiassociation Protein Factor (mr = 25,000).
    Date November 1984
    Journal The Journal of Biological Chemistry
    Excerpt

    A ribosomal subunit antiassociation activity has been purified from both the postribosomal supernatant and ribosomal salt-wash protein fractions of rabbit reticulocyte lysates. A majority (greater than 90%) of the activity is associated with a low molecular weight protein of Mr of approximately 25,000. A small but significant level of antiassociation activity (less than 10%) was found to be associated with higher molecular weight protein fractions. The purified 25,000-dalton antiassociation factor interacts with 60 S ribosomal subunits to prevent them from reassociating with 40 S ribosomal subunits. The factor does not seem to interact directly with 40 S subunits nor does it dissociate 80 S monosomes. The properties of this factor are thus similar to the eukaryotic initiation factor 6 isolated from both wheat germ and calf liver extracts.

    Title Eukaryotic Ribosomal Subunit Anti-association Activity of Calf Liver is Contained in a Single Polypeptide Chain Protein of Mr = 25,500 (eukaryotic Initiation Factor 6).
    Date August 1982
    Journal The Journal of Biological Chemistry
    Excerpt

    A protein factor that prevents the reassociation of eukaryotic 40 S and 60 S ribosomal subunits when the Mg+ concentration is raised from 1 to 5 mM has been purified to apparent electrophoretic homogeneity from postribosomal supernatant of calf liver extracts. The purified ribosomal subunit anti-association factor is a relatively heat-sensitive protein consisting of a single polypeptide chain of apparent Mr = 25,500. Direct assay for ribosomal subunit anti-association activity indicates that the majority (greater than 90% of such an activity in calf liver extracts can be accounted for by the presence of this 25,500-dalton protein factor in the postribosomal supernatant. The ribosomal salt wash protein fractions are virtually devoid of any significant ribosomal subunit anti-association or 80 S ribosome dissociation activity. The purified anti-association factor maintains a pool of ribosomal subunits by binding to 60 S ribosomal subunits and preventing them from reassociating with 40 S ribosomal subunits, rather than by dissociating 80 S monosomes. The factor neither binds to, nor seems to interact directly with, 40 S subunits. The properties of this factor are thus similar to wheat germ ribosome dissociation factor (eukaryotic initiation factor 6) described by Russell and Spremulli ((1979) J. Biol. Chem. 254, 8796-8800.

    Title Interleukin-19 is a Negative Regulator of Innate Immunity and Critical for Colonic Protection.
    Date
    Journal Journal of Pharmacological Sciences
    Excerpt

    The cytokine, interleukin (IL)-19, is a member of the IL-10 family that includes IL-20, IL-22, IL-24, and IL-26. Recent studies have shown that IL-19 is produced by keratinocytes, epithelial cells, macrophages, and B-cells. Little is known about the exact biological role of IL-19 in immunological regulation, although there is an increasing body of data demonstrating that IL-19 is associated with the development of Th2 responses and the pathogenesis of psoriasis. In this review, I shall attempt to discuss current knowledge about the role of IL-19 on macrophages and the potential role in inflammatory bowel disease.


    Similar doctors nearby

    Dr. Sirisha Puppala

    Family Medicine
    12 years experience
    Sun City West, AZ

    Dr. Cynthia Lowe

    Family Medicine
    23 years experience
    Sun City West, AZ

    Dr. Brian Hawkins

    Family Medicine
    12 years experience
    Sun City West, AZ

    Dr. Robert Alfich

    Family Medicine
    23 years experience
    Sun City West, AZ

    Dr. A Ruttinger

    Family Medicine
    25 years experience
    Sun City West, AZ

    Dr. Paul Keiser

    Family Medicine
    28 years experience
    Sun City West, AZ
    Search All Similar Doctors