Otolaryngologist (ear, nose, throat), Surgical Specialist
5 years of experience

Mclaren Bay Region
1900 Columbus Ave
Bay City, MI 48708
989-894-3000
Locations and availability (4)

Education ?

Medical School Score Rankings
University of Washington (2005)
  • Currently 4 of 4 apples
Top 25%

Affiliations ?

Dr. Basura is affiliated with 7 hospitals.

Hospital Affilations

Score

Rankings

  • Mount Clemens Regional Medical Center
    Otolaryngology
    1000 Harrington St, Mount Clemens, MI 48043
    • Currently 4 of 4 crosses
    Top 25%
  • Central Michigan Community Hospital
    Otolaryngology
    1221 South Dr, Mount Pleasant, MI 48858
    • Currently 1 of 4 crosses
  • Bay Special Care Center
    3250 E Midland Rd, Bay City, MI 48706
    • Currently 1 of 4 crosses
  • Bay Regional Medical Center
    Otolaryngology
    1900 Columbus Ave, Bay City, MI 48708
    • Currently 1 of 4 crosses
  • McLaren-Bay Region
  • Ann Arbor Veterans Affairs Medical Center
    2215 Fuller Rd, Ann Arbor, MI 48105
  • University of Michigan Hospitals & Health Centers
  • Publications & Research

    Dr. Basura has contributed to 16 publications.
    Title Persistent Positional Nystagmus: a Case of Superior Semicircular Canal Benign Paroxysmal Positional Vertigo?
    Date September 2011
    Journal The Laryngoscope
    Excerpt

    Involvement of the superior semicircular canal (SSC) in benign paroxysmal positional vertigo (BPPV) is rare. SSC BPPV is distinguished from the more common posterior semicircular canal (PSC) variant by the pattern of nystagmus triggered by the Dix-Hallpike position: down-beating torsional nystagmus in SSC BPPV versus up-beating torsional nystagmus in PSC BPPV. SSC BPPV may be readily treated at the bedside, which is a key component in excluding central causes of down-beating nystagmus. We present an unusual video case report believed to represent refractory SSC BPPV based on the pattern of nystagmus and the absence of any other central signs.

    Title Hearing Loss Alters Serotonergic Modulation of Intrinsic Excitability in Auditory Cortex.
    Date February 2011
    Journal Journal of Neurophysiology
    Excerpt

    Sensorineural hearing loss during early childhood alters auditory cortical evoked potentials in humans and profoundly changes auditory processing in hearing-impaired animals. Multiple mechanisms underlie the early postnatal establishment of cortical circuits, but one important set of developmental mechanisms relies on the neuromodulator serotonin (5-hydroxytryptamine [5-HT]). On the other hand, early sensory activity may also regulate the establishment of adultlike 5-HT receptor expression and function. We examined the role of 5-HT in auditory cortex by first investigating how 5-HT neurotransmission and 5-HT(2) receptors influence the intrinsic excitability of layer II/III pyramidal neurons in brain slices of primary auditory cortex (A1). A brief application of 5-HT (50 μM) transiently and reversibly decreased firing rates, input resistance, and spike rate adaptation in normal postnatal day 12 (P12) to P21 rats. Compared with sham-operated animals, cochlear ablation increased excitability at P12-P21, but all the effects of 5-HT, except for the decrease in adaptation, were eliminated in both sham-operated and cochlear-ablated rats. At P30-P35, cochlear ablation did not increase intrinsic excitability compared with shams, but it did prevent a pronounced decrease in excitability that appeared 10 min after 5-HT application. We also tested whether the effects on excitability were mediated by 5-HT(2) receptors. In the presence of the 5-HT(2)-receptor antagonist, ketanserin, 5-HT significantly decreased excitability compared with 5-HT or ketanserin alone in both sham-operated and cochlear-ablated P12-P21 rats. However, at P30-P35, ketanserin had no effect in sham-operated and only a modest effect cochlear-ablated animals. The 5-HT(2)-specific agonist 5-methoxy-N,N-dimethyltryptamine also had no effect at P12-P21. These results suggest that 5-HT likely regulates pyramidal cell excitability via multiple receptor subtypes with opposing effects. These data also show that early sensorineural hearing loss affects the ability of 5-HT receptor activation to modulate A1 pyramidal cell excitability.

    Title Bilateral Cochlear Implantation: Current Concepts, Indications, and Results.
    Date January 2010
    Journal The Laryngoscope
    Excerpt

    The optimal treatment for bilateral hearing loss continues to evolve as cochlear implant (CI) and hearing aid technologies advance, as does our understanding of the central auditory system. Ongoing discussions continue on the validity and feasibility of bilateral CI in terms of performance, justification of need, medical/surgical safety concerns, and economics. The purpose of this review article is to provide an update on the advantages and disadvantages of bilateral CI and to provide a discussion on timing (simultaneous vs. sequential), technology (bimodal vs. binaural) and feasibility. Binaural advantages are found in both adult and pediatric bilateral CI recipients, the greatest being the head shadow effect and improvements in localization and loudness summation. This theoretically offers an advantage over their unilateral implanted counterparts in terms of improved sound localization and enhanced speech perception under noisy conditions. Most investigators agree that bilateral stimulation during critical periods of development is paramount for optimizing auditory functioning in children. Currently, bilateral CI is widely accepted as a safe and effective means of bilateral auditory stimulation.

    Title Clinical Features and the Management of Pyridoxine-dependent and Pyridoxine-responsive Seizures: Review of 63 North American Cases Submitted to a Patient Registry.
    Date September 2009
    Journal European Journal of Pediatrics
    Excerpt

    To facilitate clinical research on pyridoxine-dependent seizures (PDS), a rare disease registry was established for affected patients in the United States and Canada. From 1999 to 2007, 63 cases, ranging in age from 11 months to 40 years, were registered. All registered cases were diagnosed with PDS by their physicians using clinical criteria. Seventy percent of the cases presented with neonatal seizures, and the mean lag time between presentation and diagnosis was 313 days. Pyridoxine treatment regimens were varied, ranging from 50 to 2,500 mg per day (1.4 to 67.8 mg/kg/day). While 47 of the cases were seizure-free on pyridoxine monotherapy, over time, eight other cases also required the concomitant use of anticonvulsants for effective seizure control, while the remainder continued to have recurrent seizures, despite the use of pyridoxine and multiple anticonvulsants. Our review of this collection of cases suggests that, for some registered individuals, either pyridoxine may be acting as an adjunctive anticonvulsant or the patient may have developed a secondary etiology for seizures. In addition, some of these cases may have pyridoxine-responsive seizures (PRS) rather than pyridoxine-dependency. Four adult and seven school-aged cases were described as developmentally normal, while the other cases had a variety of neurodevelopmental handicaps. Twenty-five percent of the cases required the pharmacologic treatment of behavioral symptoms. Clinicians caring for neonates and other young patients with intractable seizures do not necessarily consider PDS as an etiology; therefore, certain cases may be undiagnosed or diagnosed late in the course of their evaluation and treatment. As the diagnosis of PDS can now be confirmed by genetic and biochemical testing, formal screening protocols for this disorder should be developed. Patients previously diagnosed with PDS by clinical criteria should also receive confirmatory testing.

    Title Ontogeny of Serotonin and Serotonin2a Receptors in Rat Auditory Cortex.
    Date December 2008
    Journal Hearing Research
    Excerpt

    Maturation of the mammalian cerebral cortex is, in part, dependent upon multiple coordinated afferent neurotransmitter systems and receptor-mediated cellular linkages during early postnatal development. Given that serotonin (5-HT) is one such system, the present study was designed to specifically evaluate 5-HT tissue content as well as 5-HT(2A) receptor protein levels within the developing auditory cortex (AC). Using high performance liquid chromatography (HPLC), 5-HT and the metabolite, 5-hydroxyindoleacetic acid (5-HIAA), was measured in isolated AC, which demonstrated a developmental dynamic, reaching young adult levels early during the second week of postnatal development. Radioligand binding of 5-HT(2A) receptors with the 5-HT(2A/2C) receptor agonist, (125)I-DOI ((+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl; in the presence of SB206553, a selective 5-HT(2C) receptor antagonist, also demonstrated a developmental trend, whereby receptor protein levels reached young adult levels at the end of the first postnatal week (P8), significantly increased at P10 and at P17, and decreased back to levels not significantly different from P8 thereafter. Immunocytochemical labeling of 5-HT(2A) receptors and confocal microscopy revealed that 5-HT(2A) receptors are largely localized on layer II/III pyramidal cell bodies and apical dendrites within AC. When considered together, the results of the present study suggest that 5-HT, likely through 5-HT(2A) receptors, may play an important role in early postnatal AC development.

    Title Adenosine A1 Receptor Mrna Expression and the Effects of Systemic Theophylline Administration on Respiratory Function 4 Months After C2 Hemisection.
    Date June 2004
    Journal The Journal of Spinal Cord Medicine
    Excerpt

    Previous studies from our laboratory have demonstrated that in an animal model of acute cervical spinal cord injury (SCI), respiratory function can be restored by theophylline. We also have shown that respiratory recovery occurs spontaneously after prolonged postinjury survival periods when a hemidiaphragm is paralyzed by an ipsilateral upper cervical (C2) spinal cord hemisection. Theophylline mediates functional recovery by central nervous system adenosine A1 receptor antagonism; however, it is unclear whether adenosine receptors are altered after prolonged postinjury periods and whether theophylline can further enhance restored respiratory function that occurs spontaneously.

    Title Effects of Long-term Theophylline Exposure on Recovery of Respiratory Function and Expression of Adenosine A1 Mrna in Cervical Spinal Cord Hemisected Adult Rats.
    Date August 2003
    Journal Experimental Neurology
    Excerpt

    Our lab has previously shown that when administered acutely, the methylxanthine theophylline can activate a latent respiratory motor pathway to restore function to the hemidiaphragm paralyzed by an ipsilateral C2 spinal cord hemisection. The recovery is mediated by the antagonism of CNS adenosine A1 receptors. The objective of the present study was to assess quantitatively recovery after chronic theophylline administration, the effects of weaning from the drug, and the effects of the drug on adenosine A1 receptor mRNA expression in adult rats subjected to a C2 hemisection. Rats subjected to a left C2 hemisection received theophylline orally for 3, 7, 12, or 30 days and were classified as 3D, 7D, 12D, or 30D respectively. Separate groups of 3D animals were weaned from drug administration for 7, 12, and 30 days before assessment of respiratory recovery. Additional groups of 7D and 12D animals were also weaned from drug administration for 7 and 12 days prior to assessment. Sham-operated controls received theophylline vehicle for similar periods. Quantitative assessment of recovered respiratory activity was conducted under standardized electrophysiologic recording conditions approximately 18 h after each drug application period. Serum theophylline analysis was conducted at the end of electrophysiologic recordings. Adenosine A1 receptor mRNA expression in the phrenic nucleus was assessed with in situ hybridization and immunohistochemistry. Chronic theophylline induced a dose-dependent effect on respiratory recovery over a serum theophylline range of 1.2-1.9 microg/ml. Recovery was characterized as respiratory-related activity in the left phrenic nerve and expressed as a percentage of activity in the homolateral nerve in noninjured animals under similar recording conditions. Recovered activity was 34.13 +/- 2.07, 55.89 +/- 2.96, 74.78 +/- 1.93, and 79.12 +/- 1.75% respectively in the 3D, 7D, 12D, and 30D groups. Theophylline-induced recovered activity persisted for as long as 30 days when drug administration was stopped and serum levels of the drug were virtually undetected. Furthermore, recovered activity in 3D and 7D animals increased significantly as a function of duration of weaning. Adenosine A1 receptor mRNA expression was not significantly changed by theophylline administration. It is concluded that recovery of respiratory function in C2-hemisected rats induced by chronic theophylline is unrelated to adenosine A1 receptor mRNA expression. Recovered activity persists even when drug administration has been stopped. The significance of our results is that in the clinical application of theophylline to improve respiratory impairment, intermittent drug administration may be sufficient to engender and maintain the therapeutic benefits of the drug.

    Title Theophylline-induced Respiratory Recovery Following Cervical Spinal Cord Hemisection is Augmented by Serotonin 2 Receptor Stimulation.
    Date January 2003
    Journal Brain Research
    Excerpt

    Cervical spinal cord hemisection leads to a disruption of bulbospinal innervation of phrenic motoneurons resulting in paralysis of the ipsilateral hemidiaphragm. We have previously demonstrated separate therapeutic roles for theophylline, and more recently serotonin (5-HT) as modulators to phrenic nerve motor recovery; mechanisms that likely occur via adenosine A1 and 5-HT2 receptors, respectively. The present study was designed to specifically determine if concurrent stimulation of 5-HT2 receptors may enhance motor recovery induced by theophylline alone. Adult female rats (250-350 g; n=7 per group) received a left cervical (C2) hemisection that resulted in paralysis of the ipsilateral hemidiaphragm. Twenty-four hours later rats were given systemic theophylline (15 mg/kg, i.v.), resulting in burst recovery in the ipsilateral phrenic nerve. Theophylline-induced recovery was enhanced with the 5-HT2A/2C receptor agonist, (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI; 1.0 mg/kg). DOI-evoked augmentation of theophylline-induced recovery was attenuated following subsequent injection of the 5-HT2 receptor antagonist, ketanserin (2.0 mg/kg). In a separate group, rats were pretreated with ketanserin, which did not prevent subsequent theophylline-induced respiratory recovery. However, pretreatment with ketanserin did prevent DOI-induced augmentation of the theophylline-evoked phrenic nerve burst recovery. Lastly, using immunocytochemistry and in situ hybridization, we showed for the first time a positive co-localization of adenosine A1 receptor mRNA and immunoreactivity with phrenic motoneurons of the cervical ventral horns. Taken together, the results of the present study suggest that theophylline may induce motor recovery likely at adenosine A1 receptors located at the level of the spinal cord, and the concurrent stimulation of converging 5-HT2 receptors may augment the response.

    Title Serotonin(2) Receptors Mediate Respiratory Recovery After Cervical Spinal Cord Hemisection in Adult Rats.
    Date February 2002
    Journal Journal of Applied Physiology (bethesda, Md. : 1985)
    Excerpt

    The aim of the present study was to specifically investigate the involvement of serotonin [5-hydroxytryptamine (5-HT(2))] receptors in 5-HT-mediated respiratory recovery after cervical hemisection. Experiments were conducted on C(2) spinal cord-hemisected, anesthetized (chloral hydrate, 400 mg/kg ip), vagotomized, pancuronium- paralyzed, and artificially ventilated female Sprague-Dawley rats in which CO(2) levels were monitored and maintained. Twenty-four hours after spinal hemisection, the ipsilateral phrenic nerve displayed no respiratory-related activity indicative of a functionally complete hemisection. Intravenous administration of the 5-HT(2A/2C)-receptor agonist (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) induced respiratory-related activity in the phrenic nerve ipsilateral to hemisection under conditions in which CO(2) was maintained at constant levels and augmented the activity induced under conditions of hypercapnia. The effects of DOI were found to be dose dependent, and the recovery of activity could be maintained for up to 2 h after a single injection. DOI-induced recovery was attenuated by the 5-HT(2)-receptor antagonist ketanserin but not with the 5-HT(2C)-receptor antagonist RS-102221, suggesting that 5-HT(2A) and not necessarily 5-HT(2C) receptors may be involved in the induction of respiratory recovery after cervical spinal cord injury.

    Title Serotonin 2a Receptor Regulation of Striatal Neuropeptide Gene Expression is Selective for Tachykinin, but Not Enkephalin Neurons Following Dopamine Depletion.
    Date December 2001
    Journal Brain Research. Molecular Brain Research
    Excerpt

    Serotonin (5-HT) 2A receptor-mediated regulation of striatal preprotachykinin (PPT) and preproenkephalin (PPE) mRNAs was studied in adult rodents that had been subjected to near-total dopamine (DA) depletion as neonates. Two months following bilateral 6-hydroxydopamine (6-OHDA) lesion, PPT mRNA levels decreased 59-73% across dorsal subregions of the rostral and caudal striatum while PPE transcripts increased 61-94%. Four hours after a single injection of the serotonin 2A/2C receptor agonist, (+/-)-1-(2,5-Dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 1 mg/kg), PPT mRNA expression was significantly increased in DA-depleted rats across all dorsal subregions of the rostral and caudal striatum as compared to 6-OHDA-treated animals alone. In the intact rat, DOI did not influence PPT mRNA levels in the rostral striatum, but did raise expression in the caudal striatum where 5-HT2A receptors are prominent. DOI did not regulate PPE mRNA levels in any striatal sub-region of the intact or DA-depleted rat. Prior administration of the 5-HT2A/2C receptor antagonist, ritanserin (1 mg/kg) or the 5-HT2A receptor antagonist, ketanserin (1 mg/kg) completely blocked the DOI-induced increases in striatal PPT mRNA in both lesioned and intact animals. The ability of ketanserin to produce identical results as ritanserin suggests that 5-HT2A receptor-mediated regulation is selectively strengthened within tachykinin neurons of the rostral striatum which are suppressed by DA depletion. The selectivity suggests that 5-HT2A receptor upregulation following DA depletion is capable of regulating tachykinin biosynthesis without influencing enkephalin expression in striatal output neurons.

    Title Distribution of Serotonin 2a and 2c Receptor Mrna Expression in the Cervical Ventral Horn and Phrenic Motoneurons Following Spinal Cord Hemisection.
    Date July 2001
    Journal Experimental Neurology
    Excerpt

    Cervical spinal cord injury leads to a disruption of bulbospinal innervation from medullary respiratory centers to phrenic motoneurons. Animal models utilizing cervical hemisection result in inhibition of ipsilateral phrenic nerve activity, leading to paralysis of the hemidiaphragm. We have previously demonstrated a role for serotonin (5-HT) as one potential modulator of respiratory recovery following cervical hemisection, a mechanism that likely occurs via 5-HT2A and/or 5-HT2C receptors. The present study was designed to specifically examine if 5-HT2A and/or 5-HT2C receptors are colocalized with phrenic motoneurons in both intact and spinal-hemisected rats. Adult female rats (250-350 g; n = 6 per group) received a left cervical (C2) hemisection and were injected with the fluorescent retrograde neuronal tracer Fluorogold into the left hemidiaphragm. Twenty-four hours later, animals were killed and spinal cords processed for in situ hybridization and immunohistochemistry. Using (35)S-labeled cRNA probes, cervical spinal cords were probed for 5-HT2A and 5-HT2C receptor mRNA expression and double-labeled using an antibody to Fluorogold to detect phrenic motoneurons. Expression of both 5-HT2A and 5-HT2C receptor mRNA was detected in motoneurons of the cervical ventral horn. Despite positive expression of both 5-HT2A and 5-HT2C receptor mRNA-hybridization signal over phrenic motoneurons, only 5-HT2A silver grains achieved a signal-to-noise ratio representative of colocalization. 5-HT2A mRNA levels in identified phrenic motoneurons were not significantly altered following cervical hemisection compared to sham-operated controls. Selective colocalization of 5-HT2A receptor mRNA with phrenic motoneurons may have implications for recently observed 5-HT2A receptor-mediated regulation of respiratory activity and/or recovery in both intact and injury-compromised states.

    Title Stimulated Serotonin Release from Hyperinnervated Terminals Subsequent to Neonatal Dopamine Depletion Regulates Striatal Tachykinin, but Not Enkephalin Gene Expression.
    Date January 2001
    Journal Brain Research. Molecular Brain Research
    Excerpt

    Dopamine (DA) depletion in neonatal rodents results in depressed tachykinin and elevated enkephalin gene expression in the adult striatum (STR). Concurrently, serotonin (5-HT) fibers sprout to hyperinnervate the DA-depleted anterior striatum (A-STR). The present study was designed to determine if increased 5-HT release from sprouted terminals influences dysregulated preprotachykinin (PPT) and preproenkephalin (PPE) mRNA expression in the DA-depleted STR. Three-day-old Sprague-Dawley rat pups received bilateral intracerebroventricular injections of vehicle or the DA neurotoxin 6-hydroxydopamine (6-OHDA, 100 microg). Two months later, rats received a single intraperitoneal injection of vehicle or the acute 5-HT releasing agent p-chloroamphetamine (PCA; 10 mg/kg). Rats were killed 4 h later and striata processed for monoamine content by HPLC-ED and mRNA expression by in situ hybridization within specific subregions of the A-STR and posterior striatum (P-STR). 6-OHDA treatment severely (>98%) reduced striatal DA levels, while 5-HT content in the A-STR was significantly elevated (doubled), indicative of 5-HT hyperinnervation. Following 6-OHDA, PPT mRNA levels were depressed 60-66% across three subregions of the A-STR and 52-59% across two subregions of the P-STR, while PPE mRNA expression was elevated in both the A-STR (50-62%) and P-STR (55-82%). PCA normalized PPT mRNA levels in all regions of the DA-depleted A-STR and P-STR, yet did not alter PPE levels in either dorsal central or medial regions from 6-OHDA alone, but reduced PPE to control levels in the dorsal lateral A-STR. These data indicate that increased 5-HT neurotransmission, following neonatal 6-OHDA treatment, primarily influences PPT-containing neurons of the direct striatal output pathway.

    Title Serotonin 2a and 2c Receptor Biosynthesis in the Rodent Striatum During Postnatal Development: Mrna Expression and Functional Linkage to Neuropeptide Gene Regulation.
    Date November 2000
    Journal Synapse (new York, N.y.)
    Excerpt

    The present study was designed to determine if there are region-specific differences in serotonin (5-HT) neurotransmission and 5-HT receptor expression that may limit the stimulatory effects of the 5-HT releaser p-chloroamphetamine (pCA) on striatal neuropeptide gene expression to the posterior striatum (P-STR) during postnatal maturation. Sprague-Dawley rat brains from postnatal days (PND) 1-35 were processed for 5-HT(2A) and 5-HT(2C) receptor mRNA expression by in situ hybridization and monoamine analysis by HPLC. Within the P-STR, 5-HT(2A) receptor mRNA expression reached young adult (PND 35) levels by PND 3, while levels in the A-STR were significantly less (range: 1.43 +/- 0.219-6. 36 +/- 0.478) than P-STR (5.36 +/- 0.854-12.11 +/- 1.08) at each respective age throughout the time course. 5-HT(2C) receptor mRNA expression reached young adult levels at PND 7 in the A-STR and by PND 3 in the P-STR. At each PND age 5-HT(2C) receptor mRNA levels within the P-STR were significantly less (6.23 +/- 1.02-12.32 +/- 0.427) than the A-STR (7.31 +/- 1.65-26.84 +/- 2.24). 5-HT content increased across the developmental time course within the P-STR (5.01 +/- 0.327-15.7 +/- 1.03 ng/mg protein) and A-STR (2.97 +/- 0. 223-11.2 +/- 0.701 ng/mg protein). Four hours following injection (i. p.) of pCA (10 mg/kg), preprotachykinin (PPT) mRNA levels increased 89% in the P-STR but not the anterior (A-STR) striatum of the 3-week-old rat, which were prevented by preinjection (30 min, i.p.) of the 5-HT(2) receptor antagonist ritanserin (1 mg/kg). Together, these data suggest that faster maturity of 5-HT(2A) receptor expression in the P-STR may be sufficient to convey the region-specific acute stimulatory effects of pCA on PPT mRNA transcription in the developing rodent striatum. These results provide further evidence that the influence of 5-HT on neuropeptide gene expression is far stronger in caudal vs. rostral striatal regions during postnatal development.

    Title Suppression of Serotonin Hyperinnervation Does Not Alter the Dysregulatory Influences of Dopamine Depletion on Striatal Neuropeptide Gene Expression in Rodent Neonates.
    Date February 2000
    Journal Neuroscience Letters
    Excerpt

    Sixty days following neonatal dopamine depletion (>98%) with 6-hydroxydopamine, preprotachykinin and preprodynorphin mRNA levels were significantly reduced (67 and 78% of vehicle controls, respectively) in the anterior striatum as determined by in situ hybridization while preproenkephalin mRNA expression was elevated (133% of vehicle controls). Suppression of the serotonin hyperinnervation phenomenon in the dopamine-depleted rat with 5,7-dihydroxytryptamine yielded no significant alterations in reduced striatal preprotachykinin (66%) or preprodynorphin (64%) mRNA levels, while preproenkephalin mRNA expression remained significantly elevated (140%). These data suggest that striatal serotonin hyperinnervation does not contribute to the development of dysregulated striatal neuropeptide transmission in either direct or indirect striatal output pathways following neonatal dopamine depletion.

    Title Serotonin 2a Receptor Mrna Levels in the Neonatal Dopamine-depleted Rat Striatum Remain Upregulated Following Suppression of Serotonin Hyperinnervation.
    Date October 1999
    Journal Brain Research. Developmental Brain Research
    Excerpt

    Sixty days after bilateral dopamine (DA) depletion (>98%) with 6-hydroxydopamine (6-OHDA) in neonatal rats, serotonin (5-HT) content doubled and 5-HT(2A) receptor mRNA expression rose 54% within the rostral striatum. To determine if striatal 5-HT(2A) receptor mRNA upregulation is dependent on increased 5-HT levels following DA depletion, neonatal rats received dual injections of 6-OHDA and 5,7-dihydroxytryptamine (5,7-DHT) which suppressed 5-HT content by approximately 90%. In these 6-OHDA/5,7-DHT-treated rats, striatal 5-HT(2A) receptor mRNA expression was still elevated (87% above vehicle controls). Comparative analysis of 5-HT(2C) receptor mRNA expression yielded no significant changes in any experimental group. These results demonstrate that upregulated 5-HT(2A) receptor biosynthesis in the DA-depleted rat is not dependent on subsequent 5-HT hyperinnervation.

    Title Differential Sensitivity of Tachykinin Vs. Enkephalin Gene Expression in the Posterior Striatum in Response to Acute P-chloroamphetamine Treatment During Postnatal Development.
    Date April 1999
    Journal Brain Research. Developmental Brain Research
    Excerpt

    The acute effects of the monoamine releaser p-chloroamphetamine (pCA, 10 mg/kg, i.p.) on preprotachykinin (PPT) and preproenkephalin (PPE) mRNA expression in the anterior (A-STR) vs. posterior (P-STR) striatum were studied in rodents at postnatal days (PND) 10, 21 and 35. Northern analysis 4 h post-injection yielded no significant mRNA changes within the A-STR of any pCA group. However, significant increases (80-200% of saline control) in PPT mRNA levels occurred within the P-STR at all three postnatal ages. Interestingly, pCA did not increase PPE mRNA levels within the P-STR until PND 35 (150% of saline control). Such observation suggests that tachykinin neurons of the P-STR achieve an earlier monoamine-responsive signal transduction linkage to gene regulation as compared to enkephalin neurons. Given its predominance in the caudal regions of the striatum, 5-HT neurotransmission at the 5-HT2 receptor is suggested to play a central role in this mechanism.

    Similar doctors nearby

    Dr. Cameron Budenz

    Otolaryngology
    5 years experience
    Bay City, MI

    Dr. Syed Rizvi

    Otolaryngology
    39 years experience
    Bay City, MI

    Dr. Marie Gauthier

    Otolaryngology
    33 years experience
    Bay City, MI

    Dr. David Farber

    Otolaryngology
    17 years experience
    Bay City, MI

    Dr. James Stoddard

    Otolaryngology
    44 years experience
    Bay City, MI

    Dr. Scott Baker

    Otolaryngology
    22 years experience
    Bay City, MI
    Search All Similar Doctors